Binary mixtures of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water show an upper critical solution temperature. This solvent system has been used to extract metal ions by phase-transition extraction, using zwitterionic betaine as extractant. The system is efficient for the extraction of trivalent rare-earth, indium and gallium ions. This new type of metal extraction system avoids problems associated with the use of viscous ionic liquids, namely, the difficulty of intense mixing of the aqueous and ionic liquid phases by stirring.
Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature.
The ionic liquid betainium bis(trifluoromethylsulfonyl)imide [Hbet][Tf 2 N] was used for the extraction of scandium from aqueous solutions. The influence of several extraction parameters on the extraction efficiency was investigated, including the initial metal concentration, phase ratio, and pH. The extraction kinetics was examined, and a comparison was made between conventional liquid−liquid extraction and homogeneous liquid−liquid extraction (HLLE). The stoichiometry of the extracted scandium complex was determined with slope analysis. Scandium(III) is extracted as a complex with zwitterionic betaine in a 1:3 stoichiometry, with three bis(trifluoromethylsulfonyl)imide counterions. Upon extraction of scandium(III), proton exchange occurs and three protons are transferred to the aqueous phase. Scandium is an important minor element present in bauxite residue (red mud), the waste product that results from the industrial production of alumina by the Bayer process. To evaluate the suitability of [Hbet][Tf 2 N] for the selective recovery of scandium(III) from red mud leachates, the extraction of other metals present in the leachates (La(III), Ce(III), Nd(III), Dy(III), Y(III), Fe(III), Al(III), Ti(IV), Ca(II), Na(I)) was considered. It was shown that the trivalent lanthanide ions, yttrium(III) and the major elements aluminum(III), titanium(IV), calcium(II), and sodium(I), are all poorly extracted, which is advantageous for the selective recovery of scandium(III) from red mud. Iron(III) showed an extraction behavior similar to that of scandium(III). Scandium recovery was examined from a multielement rare-earth solution. Scandium could be separated from the other rare-earth elements by extraction with [Hbet][Tf 2 N] and subsequent scrubbing of the loaded ionic liquid phase to remove coextracted metal ions. The extracted scandium was recovered from the ionic liquid phase by using back-extraction with hydrochloric acid or precipitation stripping with oxalic acid. ■ INTRODUCTIONScandium is generally considered to be part of the group of the rare-earth elements since both scandium and the other rareearth elements have a stable trivalent oxidation state. However, the chemical properties of scandium differ significantly from those of the other rare-earth elements. The ionic radius of scandium(III) is much smaller (0.745 Å for sixfold coordination) than any of the trivalent lanthanide ions. As a result, complexes of scandium(III) show higher stability constants than the corresponding lanthanide(III) complexes. 1,2 The main application of scandium is aluminum−scandium alloy. 3 Scandium-containing aluminum shows superior mechanical and physical properties compared to other high-strength alloys, such as higher strength, better corrosion resistance, and less hot cracking in welds. 4 Other important applications of scandium include scandia-stabilized zirconia for solid oxide fuel cells (SOFC), analytical standards, high-intensity metal halide lamps, laser crystals, and oil-well tracers (radioactive isotope 46 Sc). 3,5 The number ...
The metal extraction mechanism of basic extractants is typically described as an anion exchange process, but this mechanism does not correctly explain all observations. This paper introduces a novel model for the extraction of metals by basic extractants from chloride media supported by experimental data on methyltrioctylammonium chloride and Aliquat 336 chloride systems. This model relies on the hypothesis that the metal species least stabilized in the aqueous phase by hydration (i.e., the metal species with the lowest charge density) is extracted more efficiently than the more water stabilized species (i.e., species with higher charge densities). Once it is transferred to the organic phase, the extracted species can undergo further Lewis acid−base adduct formation reactions with the chloride anions available in the organic phase to form negatively charged chloro complexes, which than associate with the organic cations. Salting-out agents influence the extraction, most likely by decreasing the concentration of free water molecules, which destabilizes the metal complex in the aqueous phase. The evidence provided includes (1) the link between extraction and transition-metal speciation, (2) the trend in extraction efficiency as a function of the concentration of different salting-out agents, and (3) the behavior of HCl in the extraction system. The proposed extraction model better explains the experimental observations in comparison to the anion exchange model and allows the prediction of optimal conditions for metal extractions and separations a priori, by selecting the most suitable salting-out agent and its concentration.
Neodymium and dysprosium can be separated using a new extraction system based on a deep-eutectic solvent and Cyanex® 923 diluted in toluene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.