Efficient yet simple electronic structure-based descriptors of transition metal surfaces are key in material design for many scientific fields in research and technology. Density functional theory-based methods provide the framework to systematically explore the performance and transferability of such descriptors. Using appropriate surface models and the Vosko-Wilk-Nussair (VWN), Perdew-Burke-Ernzerhof (PBE), PBE adapted for solids (PBEsol), revised PBE (RPBE), and Tao-Perdew-Staroverov-Scuseria (TPSS) exchange-correlation functionals, we study the transferability of three descriptors: the d-band centre, the width-corrected d-band centre, and the Hilbert transform highest peak, among the low-index Miller surfaces for the metals of transition elements. We show that the d-band centre and the width-corrected d-band centre descriptors are almost independent of the functional used whereas a dependency is seen in the Hilbert transform highest peak. Moreover, it is seen that the differences between the surface descriptor values and predictions from the bulk ones are affected by the presence of surface states. Interestingly, a direct relation between the surface coordination number and the d-band centre electronic descriptor is found when surface states are absent.
Deoxygenation processes are key in the transformation of bio-sourced molecules to sustainable fuels, a field where heterogeneous catalysis plays a central role. A recent study suggested a link between deoxygenation...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.