Vector beams, and in particular vector vortex beams, have found many applications in recent times, both as classical fields and as quantum states. While much attention has focused on the creation and detection of scalar optical fields, it is only recently that vector beams have found their place in the modern laboratory. In this review, we outline the fundamental concepts of vector beams, summarise the various approaches to control them in the laboratory, and give a concise overview of the many applications they have spurned.
Vector vortex beams are structured states of light that are non-separable in their polarisation and spatial mode, they are eigenmodes of free-space and many fibre systems, and have the capacity to be used as a modal basis for both classical and quantum communication. Here we outline recent progress in our understanding of these modes, from their creation to their characterization and detection. We then use these tools to study the propagation behaviour of such modes in free-space and optical fibre and show that modal cross-talk results in a decay of vector states into separable scalar modes, with a concomitant loss of information. We present a comparison between probabilistic and deterministic detection schemes showing that the former, while ubiquitous, negates the very benefit of increased dimensionality in quantum communication while reducing signal in classical communication links. This work provides a useful introduction to the field as well as presenting new findings and perspectives to advance it further.
Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.
Holography is a cornerstone characterisation and imaging technique that can be applied to the full electromagnetic spectrum, from X-rays to radio waves or even particles such as neutrons. The key property in all these holographic approaches is coherence that is required to extract the phase information through interference with a reference beam -without this, holography is not possible. Here we introduce a holographic imaging approach that operates on intrinsically incoherent and unpolarised beams, so that no phase information can be extracted from a classical interference measurement. Instead, the holographic information is encoded in the second order coherence of entangled states of light. Using spatial-polarisation hyper-entangled photons pairs, we remotely reconstruct phase images of complex objects. Information is encoded into the polarisation degree of the entangled state, allowing us to image through dynamic phase disorder and even in the presence of strong classical noise, with enhanced spatial resolution compared to classical coherent holographic systems. Beyond imaging, quantum holography quantifies hyper-entanglement distributed over 10 4 modes via a spatially-resolved Clauser-Horne-Shimony-Holt inequality measurement, with applications in quantum state characterisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.