Core Ideas
AMMA‐CATCH is a long‐term critical zone observatory in West Africa.
Four sites sample the sharp ecoclimatic gradient characteristic of this region.
Combined measurements of meteorology, water, and vegetation dynamics began in 1990.
Intensification of rainfall and hydrological cycles is observed.
The strong overall re‐greening may hide contrasted changes.
West Africa is a region in fast transition from climate, demography, and land use perspectives. In this context, the African Monsoon Multidisciplinary Analysis (AMMA)–Couplage de l'Atmosphère Tropicale et du Cycle eco‐Hydrologique (CATCH) long‐term regional observatory was developed to monitor the impacts of global change on the critical zone of West Africa and to better understand its current and future dynamics. The observatory is organized into three thematic axes, which drive the observation and instrumentation strategy: (i) analyze the long‐term evolution of eco‐hydrosystems from a regional perspective; (ii) better understand critical zone processes and their variability; and (iii) meet socioeconomic and development needs. To achieve these goals, the observatory has gathered data since 1990 from four densely instrumented mesoscale sites (∼104 km2 each), located at different latitudes (Benin, Niger, Mali, and Senegal) so as to sample the sharp eco‐climatic gradient that is characteristic of the region. Simultaneous monitoring of the vegetation cover and of various components of the water balance at these four sites has provided new insights into the seemingly paradoxical eco‐hydrological changes observed in the Sahel during the last decades: groundwater recharge and/or runoff intensification despite rainfall deficit and subsequent re‐greening with still increasing runoff. Hydrological processes and the role of certain key landscape features are highlighted, as well as the importance of an appropriate description of soil and subsoil characteristics. Applications of these scientific results for sustainable development issues are proposed. Finally, detecting and attributing eco‐hydrological changes and identifying possible regime shifts in the hydrologic cycle are the next challenges that need to be faced.
Abstract:The monitoring of herbaceous fuel moisture content is a crucial activity in order to assess savanna fire risks. Faced with the difficulty of managing wide areas of vegetated surfaces, remote sensing appears an attractive alternative for terrestrial measurements because of its advantages related to temporal resolution and spatial coverage. Earth observation (EO)-based vegetation indices (VIs) and the ratio between Normalized Difference Vegetation Index (NDVI) and surface temperature (ST) were used for EO-based estimates of water content were more consistent with the use of VI as compared to the ratio NDVI/ST. Different VIs based on near-infrared (NIR) and shortwave infrared (SWIR) reflectance were tested and a consistent relationship was found between field measurements of leaf equivalent water thickness (EWT) from all test sites and Normalized Difference Infrared Index (NDII), Global Vegetation Moisture Index (GVMI) and Moisture Stress Index (MSI). Also, strong relationships were found between fuel moisture content (FMC) and VIs for the sites separately; however, they were weaker for the pooled data. The correlations between EWT/FMC and VIs were found to decrease progressively as the woody cover increased. Although these results suggest that NIR and SWIR reflectance can be used for the estimation of herbaceous water content, additional validation from an increased number of study sites is necessary to study the robustness of such indices for a larger variety of savanna vegetation types.
h i g h l i g h t s At the beginning of the wet season, soil microbial activity is reactivated. Significant emissions of NO and CO 2 occur and are linked by microbial processes. Litter and straw play an important role in emitting NH 3 and NO (end of wet season). NH 3 bidirectional exchange is highlighted and both emission and deposition occur. N 2 O and NO fluxes are equivalent: denitrification occurs at low soil moisture levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.