The effects of lipid compositions on their physicochemical properties and transfection efficiencies were investigated. Four liposome formulations with different 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) to dioleoylphosphatidylethanolamine (DOPE) weight ratios were investigated, that is, weight ratios 1:0 (T1P0), 3:1 (T3P1), 1:1 (T1P1), and 1:3 (T1P3). Mean sizes of liposomes were influenced by their lipid composition and the preparation concentration at the time of sonication. Zeta potentials of liposomes were inversely correlated with their liposome sizes. However, neither liposome sizes nor zeta potentials were correlated with transfection efficiency. The optimum composition of liposomes was cell-line dependent (T1P0 and T3P1 for Huh7 and AGS, T3P1 and T1P1 for COS7, and T1P1 and T1P3 for A549). The shape of lipoplexes was changed from lamellar to inverted hexagonal structure according to the increased ratio of DOPE, but there was no definite advantage of specific structure in transfection efficiency throughout all used cell lines. However, cellular internalization was consistently faster in T1P0, T3P1, T1P1 compared to T1P3 in all cell lines, suggesting the importance of endosomal escape. Our findings show that the transfection efficiency of DOTAP liposomes is mainly influenced by lipid composition and cell type, and not by size or zeta potential.
Background
Systemic inflammatory response syndrome (SIRS) is common in severe fulminant hepatic failure (FHF) and has a high mortality rate (20–50%) due to irreversible cerebral edema or sepsis. Stem cell-based treatment has emerged as a promising alternative therapeutic strategy to prolong the survival of patients suffering from FHF via the inhibition of SIRS due to their immunomodulatory effects.
Methods
3D spheroids of adipose-derived mesenchymal stem cells (3D-ADSC) were prepared by the hanging drop method. The efficacy of the 3D-ADSC to rescue FHF was evaluated in a d-galactosamine/lipopolysaccharide (GalN/LPS)-induced mouse model of FHF via intraportal transplantation of the spheroids.
Results
Intraportally delivered 3D-ADSC better engrafted and localized into the damaged livers compared to 2D-cultured adipose-derived mesenchymal stem cells (2D-ADSC). Transplantation of 3D-ADSC rescued 50% of mice from FHF-induced lethality, whereas only 20% of mice survived when 2D-ADSC were transplanted. The improved transplantation outcomes correlated with the enhanced immunomodulatory effect of 3D-ADSC in the liver microenvironment.
Conclusion
The study shows that the transplantation of optimized 3D-ADSC can efficiently ameliorate GalN/LPS-induced FHF due to improved viability, resistance to exogenous ROS, and enhanced immunomodulatory effects of 3D-ADSC.
Cholesterol-based cationic lipids have been widely used because of biocompatibility and serum resistance. However, the reason for the effectiveness of cholesterol-based cationic lipids remains unclear. We compared the transfection route of CHOL-E, a cholesterol-based cationic lipid having an amine head and an ether linker, with that of DOTAP. The luciferase assay with chemical inhibitors and microscopic observation of pathway markers revealed that clathrin mediated endocytosis is the main pathway for CHOL-E and DOTAP. However, CHOL-E showed resistance to cholesterol depletion by methyl-β-cyclodextrin. Furthermore, CHOL-E recovered the transfection efficiency of DOTAP from cholesterol depletion. These results suggested that superior transfection of CHOL-E might be partly derived from effects on the cell membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.