Object detection in point clouds is a critical component in most autonomous driving systems. In this paper, in order to improve the effectiveness of image feature extraction and the accuracy of detection of point clouds, a pillar-based 3D point cloud object detection algorithm with multiattention mechanism is proposed, which includes three attention mechanisms SOCA, SOPA, and SAPI. The results show that the recognition accuracy of the optimized algorithm for cars, pedestrians, and cyclists on KITTI dataset is significantly improved on the detection benchmarks of BEV and 3D. Despite using only LiDAR, our algorithm outperforms PointPillars, which is one of the state-of-the-art algorithms for 3D object detection, with respect to both 3D and BEV view KITTI benchmarks while maintaining a relatively competitive speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.