Magnetic nanoparticles (MNP) with a diameter of 8 nm were modified with different generations of polyamidoamine (PAMAM) dendrimers and mixed with antisense survivin oligodeoxynucleotide (asODN). The MNP then formed asODNdendrimer-MNP composites, which we incubated with human tumor cell lines such as human breast cancer MCF-7, MDA-MB-435, and liver cancer HepG2 and then analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, quantitative reverse transcription-PCR, Western blotting, laser confocal microscopy, and high-resolution transmission electron microscopy. Results showed that the asODN-dendrimer-MNP composites were successfully synthesized, can enter into tumor cells within 15 min, caused marked down-regulation of the survivin gene and protein, and inhibited cell growth in dose-and time-dependent means. No.5 generation of asODN-dendrimer-MNP composites exhibits the highest efficiency for cellular transfection and inhibition. These results show that PAMAM dendrimer-modified MNPs may be a good gene delivery system and have potential applications in cancer therapy and molecular imaging diagnosis.
A unique, sensitive, and highly specific fluoroimmunoassay system for antigen detection using gold and magnetic nanoparticles has been developed. The assay is based on the fluorescence quenching of fluorescein isothiocyanate caused by gold nanoparticles coated with monoclonal antibody. To demonstrate its analytical capabilities, the magnetic nanoparticles were coated with anti-alpha-fetoprotein polyclonal antibodies, which specifically bound with alpha-fetoprotein. Gold nanoparticles coated with anti-alpha-fetoprotein monoclonal antibodies could sandwich the alpha-fetoprotein captured by the magnetic nanoparticle probes. The sandwich-type immunocomplex was formed on the surface of magnetic nanoparticles and could be separated by a magnetic field. The supernatant liquid, which contained the unbound gold nanoparticle probes, was used to quench the fluorescence, and the fluorescence intensity of fluorescein isothiocyanate at 516 nm was proportional to the alpha-fetoprotein concentration. The result showed that the limit of detection of alpha-fetoprotein was 0.17 nM. This new system can be extended to detect target molecules with matched antibodies and has broad potential applications in immunoassay and disease diagnosis.
With the aim of improving the amount and delivery efficiency of genes taken by carbon nanotubes into human cancer cells, different generations of polyamidoamine dendrimer modified multi-walled carbon nanotubes (dMNTs) were fabricated, and characterized by high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis, revealing the presence of dendrimer capped on the surface of carbon nanotubes. The dMNTs fully conjugated with FITC-labeled antisense c-myc oligonucleotides (asODN), those resultant asODN-dMNTs composites were incubated with human breast cancer cell line MCF-7 cells and MDA-MB-435 cells, and liver cancer cell line HepG2 cells, and confirmed to enter into tumor cells within 15 min by laser confocal microscopy. These composites inhibited the cell growth in time- and dose-dependent means, and down-regulated the expression of the c-myc gene and C-Myc protein. Compared with the composites of CNT-NH(2)-asODN and dendrimer-asODN, no. 5 generation of dendrimer-modified MNT-asODN composites exhibit maximal transfection efficiencies and inhibition effects on tumor cells. The intracellular gene transport and uptake via dMNTs should be generic for the mammalian cell lines. The dMNTs have potentials in applications such as gene or drug delivery for cancer therapy and molecular imaging.
An in situ repetitive divergent polymerization strategy was employed to grow multi-amine poly(amidoamine) dendritic macromolecules on the surfaces of multiwalled carbon nanotubes (MWNTs), affording novel three-dimensional (3D) molecular nanocomposites. The crude MWNTs were oxidized using H(2)SO(4)/HNO(3) = 3:1 (v/v) and then reacted with thionyl chloride, resulting in MWNTs functionalized with chlorocarbonyl groups (MWNT-COCl). MWNT-COCl, when reacted with an excess of ethylenediamine, produced amine-functionalized MWNT supported initiators (MWNT-NH(2)). Using the MWNT-NH(2) as the growth supporter and methylacrylate/ethylenediamine as building blocks, multi-amine dendritic poly(amidoamine) macromolecules were covalently grafted onto the sidewalls and ends of MWNTs via Michael addition reaction and amidation. Thermal gravimetric analysis (TGA) measurements showed that the weight ratio of the as-grown dendritic polymers on the MWNT surfaces lay in the 10%-50% range. The products were also characterized by Fourier transform infrared (FTIR), Raman, nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) analysis. The results indicate that the dendrimers are grafted onto the surface of MWNTs. The as-prepared nanocomposites exhibit excellent dispersibility in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.