In this work, we study the three-dimensional AdS gravitational vacuum stars (gravastars) in the context of gravity’s rainbow theory. Then we extend it by adding the Maxwell electromagnetic field. We compute the physical features of gravastars, such as proper length, energy, entropy, and junction conditions. Our results show that the physical parameters for charged and uncharged states depend significantly on rainbow functions. Besides from charged state, they also depend on the electric field. Finally, we explore the stability of thin shell of three-dimensional (un)charged AdS gravastars in gravity’s rainbow. We show that the structure of thin shell of these gravastars may be stable and is independent of the type of matter.
G are the momentum, energy, mass of a test particle and Planck energy, respectively. Also, L(ε) and H(ε) are called the rainbow functions. It is significant that there are three known cases for the rainbow function;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.