Graphene is an optical material of unusual characteristics because of its linearly dispersive conduction and valence bands and the strong interband transitions. It allows broadband light-matter interactions with ultrafast responses and can be readily pasted to surfaces of functional structures for photonic and optoelectronic applications. Recently, graphene-based optical modulators have been demonstrated with electrical tuning of the Fermi level of graphene. Their operation bandwidth, however, was limited to about 1 GHz by the response of the driving electrical circuit. Clearly, this can be improved by an all-optical approach. Here, we show that a graphene-clad microfiber all-optical modulator can achieve a modulation depth of 38% and a response time of ∼ 2.2 ps, limited only by the intrinsic carrier relaxation time of graphene. This modulator is compatible with current high-speed fiber-optic communication networks and may open the door to meet future demand of ultrafast optical signal processing.
Silicon photonics has been developed successfully with a top-down fabrication technique to enable large-scale photonic integrated circuits with high reproducibility, but is limited intrinsically by the material capability for active or nonlinear applications. On the other hand, free-standing nanowires synthesized via a bottom-up growth present great material diversity and structural uniformity, but precisely assembling free-standing nanowires for on-demand photonic functionality remains a great challenge. Here we report hybrid integration of free-standing nanowires into silicon photonics with high flexibility by coupling free-standing nanowires onto target silicon waveguides that are simultaneously used for precise positioning. Coupling efficiency between a free-standing nanowire and a silicon waveguide is up to ~97% in the telecommunication band. A hybrid nonlinear-free-standing nanowires–silicon waveguides Mach–Zehnder interferometer and a racetrack resonator for significantly enhanced optical modulation are experimentally demonstrated, as well as hybrid active-free-standing nanowires–silicon waveguides circuits for light generation. These results suggest an alternative approach to flexible multifunctional on-chip nanophotonic devices.
We demonstrate a dynamic surface plasmonic modulation based on graphene-nanowire (grapheme-NW) hybrid structures in the visible light range. A static modulation depth of as high as 0.07 dB/μm has been achieved experimentally. Through careful simulation and systematical experimental investigation, we found that the dual-confinement effect of charge density and electromagnetic energy around the vicinity of the NW will dramatically enhance the light-matter interaction and increase the Fermi level shifting, which are the key roles for bringing the optical response of the device to the visible range. The carrier concentration near the vicinity of a Ag NW is estimated to reach 0.921×10(14) cm(-2) after applying more than 25 V voltages, which is enough to shift the Fermi level for visible light. Furthermore, the modulation behaviors near the Dirac point of monolayer graphene and the singularity of gap-induced bilayer graphene are investigated. Calculated optical conductivity as a function of Fermi level predicts a minimum value near the Dirac point, which is consistent with the experimental results.
We demonstrate ultrafast optical modulation using a single 1-μm-diameter graphene-decorated microfiber, which is fabricated with a convenient and controllable evanescent-field-induced deposition method. Benefitting from the significantly enhanced light-graphene interaction of the subwavelength transvers dimension of the microfiber and accumulation of the saturable absorption of the piled graphene flakes, the microfiber shows nonlinear saturable absorption with a peak power threshold down to 1.75 W (60 MW/cm(2)), with a measured response time of about 3.5 ps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.