Background: As a recurrent inflammatory bone disease, the treatment of osteomyelitis is always a tricky problem in orthopaedics. N6-methyladenosine (m6A) regulators play significant roles in immune and inflammatory responses. Nevertheless, the function of m6A modification in osteomyelitis remains unclear.Methods: Based on the key m6A regulators selected by the GSE16129 dataset, a nomogram model was established to predict the incidence of osteomyelitis by using the random forest (RF) method. Through unsupervised clustering, osteomyelitis patients were divided into two m6A subtypes, and the immune infiltration of these subtypes was further evaluated. Validating the accuracy of the diagnostic model for osteomyelitis and the consistency of clustering based on the GSE30119 dataset.Results: 3 writers of Methyltransferase-like 3 (METTL3), RNA-binding motif protein 15B (RBM15B) and Casitas B-lineage proto-oncogene like 1 (CBLL1) and three readers of YT521-B homology domain-containing protein 1 (YTHDC1), YT521-B homology domain-containing family 3 (YTHDF2) and Leucine-rich PPR motif-containing protein (LRPPRC) were identified by difference analysis, and their Mean Decrease Gini (MDG) scores were all greater than 10. Based on these 6 significant m6A regulators, a nomogram model was developed to predict the incidence of osteomyelitis, and the fitting curve indicated a high degree of fit in both the test and validation groups. Two m6A subtypes (cluster A and cluster B) were identified by the unsupervised clustering method, and there were significant differences in m6A scores and the abundance of immune infiltration between the two m6A subtypes. Among them, two m6A regulators (METTL3 and LRPPRC) were closely related to immune infiltration in patients with osteomyelitis.Conclusion: m6A regulators play key roles in the molecular subtypes and immune response of osteomyelitis, which may provide assistance for personalized immunotherapy in patients with osteomyelitis.
Background: Total wrist arthroplasty is an effective treatment for end-stage wrist arthritis from all causes. However, wrist prostheses are still prone to complications such as prosthesis loosening and periprosthetic fractures after total wrist arthroplasty. This may be due to the wrist prosthesis imprecise matching with patient’s bone. In this study, we designed and developed a personalized three-dimensional printed microporous titanium artificial wrist prosthesis (3DMT-Wrist) for the treatment of end-stage wrist joint, and investigated its safety and effectiveness.Methods: Total wrist arthroplasty was performed using 3DMT-Wrist in 14 cases of arthritis between February 2019 and December 2021. Preoperative and postoperative visual analog scale scores, QuickDASH scores, wrist range of motion, and wrist grip strength were evaluated. Data were statistically analyzed using the paired samples t-test.Results: After 19.7 ± 10.7 months of follow-up, visual analog scale decreased from 66.3 ± 8.9 to 6.7 ± 4.4, QuickDASH scores decreased from 47.4 ± 7.3 to 28.2 ± 7.6, grip strength increased from 5.6 ± 1.4 to 17.0 ± 3.3 kg. The range of motion improved significantly in palmar flexion (30.1° ± 4.9° to 44.9° ± 6.5°), dorsal extension (15.7° ± 3.9° to 25.8° ± 3.3°), ulnar deviation (12.2° ± 3.9° to 20.2° ± 4.3°) and radial deviation (8.2° ± 2.3° to 16.2 ± 3.1). No dislocation or loosening of the prosthetic wrist joint was observed.Conclusion: Total wrist arthroplasty using 3DMT-Wrist is a safe and effective new treatment for various types of end-stage wrist arthritis; it offers excellent pain relief and maintains the range of motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.