We experimentally demonstrate wavelength-tunable self-mode-locking (SML) operation generated in an optically pumped semiconductor disk laser (OP-SDL) with a straight cavity. The operation is achieved by insetting an etalon into the cavity, and wavelength tuning range of 11 nm can be achieved by adjusting the angle of etalon. After aligning the cavity carefully, stable self-mode-locking is obtained when the pump power was beyond 5 W, and the pulse period of 0.99 ns agrees well with the round-trip time determined by the optical cavity length of 148 mm. Meanwhile, the RF spectrum reveals a clean peak at the fundamental repetition rate of 1.01 GHz and the signal-to-noise ratio of the RF spectrum reaches 60 dB during the whole tuning process, indicating the stability of the pulse was quite excellent. Finally, we obtained a wavelength-tunable SML optically pumped semiconductor disk laser. The experimental results prove that under the condition of adding an etalon in the cavity, the OP-SDL could remain a stable operation in a wider wavelength tuning range. This research is helpful to the development of wavelength tunable self-mode-locking optically pumped semiconductor disk lasers, and hopes to obtain practical applications in related fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.