Gingivo-buccal oral squamous cell carcinoma (OSCC-GB), an anatomical and clinical subtype of head and neck squamous cell carcinoma (HNSCC), is prevalent in regions where tobacco-chewing is common. Exome sequencing (n=50) and recurrence testing (n=60) reveals that some significantly and frequently altered genes are specific to OSCC-GB (USP9X, MLL4, ARID2, UNC13C and TRPM3), while some others are shared with HNSCC (for example, TP53, FAT1, CASP8, HRAS and NOTCH1). We also find new genes with recurrent amplifications (for example, DROSHA, YAP1) or homozygous deletions (for example, DDX3X) in OSCC-GB. We find a high proportion of C>G transversions among tobacco users with high numbers of mutations. Many pathways that are enriched for genomic alterations are specific to OSCC-GB. Our work reveals molecular subtypes with distinctive mutational profiles such as patients predominantly harbouring mutations in CASP8 with or without mutations in FAT1. Mean duration of disease-free survival is significantly elevated in some molecular subgroups. These findings open new avenues for biological characterization and exploration of therapies.
This study reports results of an extensive and comprehensive study of genetic diversity in 12 genes of the innate immune system in a population of eastern India. Genomic variation was assayed in 171 individuals by resequencing ~75 kb of DNA comprising these genes in each individual. Almost half of the 548 DNA variants discovered was novel. DNA sequence comparisons with human and chimpanzee reference sequences revealed evolutionary features indicative of natural selection operating among individuals, who are residents of an area with a high load of microbial and other pathogens. Significant differences in allele and haplotype frequencies of the study population were observed with the HapMap populations. Gene and haplotype diversities were observed to be high. The genetic positioning of the study population among the HapMap populations based on data of the innate immunity genes substantially differed from what has been observed for Indian populations based on data of other genes. The reported range of variation in SNP density in the human genome is one SNP per 1.19 kb (chromosome 22) to one SNP per 2.18 kb (chromosome 19). The SNP density in innate immunity genes observed in this study (>3 SNPs kb −1 ) exceeds the highest density observed for any autosomal chromosome in the human genome. The extensive genomic variation and the distinct haplotype structure of innate immunity genes observed among individuals have possibly resulted from the impact of natural selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.