Hydroperoxide-induced tyrosyl radicals are putative intermediates in cyclooxygenase catalysis by prostaglandin H synthase (PGHS)-1 and -2. Rapid-freeze EPR and stopped-flow were used to characterize tyrosyl radical kinetics in PGHS-1 and -2 reacted with ethyl hydrogen peroxide. In PGHS-1, a wide doublet tyrosyl radical (34 -35 G) was formed by 4 ms, followed by transition to a wide singlet (33-34 G); changes in total radical intensity paralleled those of Intermediate II absorbance during both formation and decay phases. In PGHS-2, some wide doublet (30 G) was present at early time points, but transition to wide singlet (29 G) was complete by 50 ms. In contrast to PGHS-1, only the formation kinetics of the PGHS-2 tyrosyl radical matched the Intermediate II absorbance kinetics. Indomethacin-treated PGHS-1 and nimesulide-treated PGHS-2 rapidly formed narrow singlet EPR (25-26 G in PGHS-1; 21 G in PGHS-2), and the same line shapes persisted throughout the reactions. Radical intensity paralleled Intermediate II absorbance throughout the indomethacin-treated PGHS-1 reaction. For nimesulide-treated PGHS-2, radical formed in concert with Intermediate II, but later persisted while Intermediate II relaxed. These results substantiate the kinetic competence of a tyrosyl radical as the catalytic intermediate for both PGHS isoforms and also indicate that the heme redox state becomes uncoupled from the tyrosyl radical in PGHS-2.
Plant ␣-dioxygenases (PADOX) are hemoproteins in the myeloperoxidase family. We have used a variety of spectroscopic, mutagenic, and kinetic approaches to characterize the heme environment in Arabidopsis thaliana PADOX-1. Recombinant PADOX-1 purified to homogeneity contained 1 mol of heme bound tightly but noncovalently per protein monomer. Electronic absorbance, electron paramagnetic resonance, and magnetic circular dichroism spectra showed a high spin ferric heme that could be reduced to the ferrous state by dithionite. Cyanide bound relatively weakly in the ferric PADOX-1 heme vicinity (K d ϳ10 mM) but did not shift the heme to the low spin state. Cyanide was a very strong inhibitor of the fatty acid oxygenase activity (K i ϳ5 M) and increased the K m value for oxygen but not that for fatty acid. Spectroscopic analyses indicated that carbon monoxide, azide, imidazole, and a variety of substituted imidazoles did not bind appreciably in the ferric PADOX-1 heme vicinity. Substitution of His-163 and His-389 with cysteine, glutamine, tyrosine, or methionine resulted in variable degrees of perturbation of the heme absorbance spectrum and oxygenase activity, consistent with His-389 serving as the proximal heme ligand and indicating that the heme has a functional role in catalysis. Overall, A. thaliana PADOX-1 resembles a b-type cytochrome, although with much more restricted access to the distal face of the heme than seen in most other myeloperoxidase family members, explaining the previously puzzling lack of peroxidase activity in the plant protein. PADOX-1 is unusual in that it has a high affinity, inhibitory cyanide-binding site distinct from the distal heme face and the fatty acid site.
Background Bone marrow derived endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) involved in neo-angiogenesis and endothelial homeostasis and are considered as a circulating reservoir for endothelial repair. Many studies showed that EPCs from patients with cardiovascular pathologies are impaired and insufficient; hence, allogenic sources of EPCs from adult or cord blood are considered as good choices for cell therapy applications. However, allogenic condition increases the chance of immune rejection, especially by T cells, before exerting the desired regenerative functions. TNFα is one of the main mediators of EPC activation that recognizes two distinct receptors, TNFR1 and TNFR2. We have recently reported that human EPCs are immunosuppressive and this effect was TNFα-TNFR2 dependent. Here, we aimed to investigate if an adequate TNFα pre-conditioning could increase TNFR2 expression and prime EPCs towards more immunoregulatory functions. Methods EPCs were pre-treated with several doses of TNFα to find the proper dose to up-regulate TNFR2 while keeping the TNFR1 expression stable. Then, co-cultures of human EPCs and human T cells were performed to assess whether TNFα priming would increase EPC immunosuppressive and immunomodulatory effect. Results Treating EPCs with 1 ng/ml TNFα significantly up-regulated TNFR2 expression without unrestrained increase of TNFR1 and other endothelial injury markers. Moreover, TNFα priming through its interaction with TNFR2 remarkably enhanced EPC immunosuppressive and anti-inflammatory effects. Conversely, blocking TNFR2 using anti-TNFR2 mAb followed by 1 ng/ml of TNFα treatment led to the TNFα-TNFR1 interaction and polarized EPCs towards pro-inflammatory and immunogenic functions. Conclusions We report for the first time the crucial impact of inflammation notably the TNFα-TNFR signaling pathway on EPC immunological function. Our work unveils the pro-inflammatory role of the TNFα-TNFR1 axis and, inversely the anti-inflammatory implication of the TNFα-TNFR2 axis in EPC immunoregulatory functions. Priming EPCs with 1 ng/ml of TNFα prior to their administration could boost them toward a more immunosuppressive phenotype. This could potentially lead to EPCs’ longer presence in vivo after their allogenic administration resulting in their better contribution to angiogenesis and vascular regeneration.
Many cosubstrates for the peroxidase activity of prostaglandin H synthase-1 (PGHS-1) have been reported to produce a large (2-7 fold) increase in the cyclooxygenase velocity in addition to a substantial increase in the number of cyclooxygenase catalytic turnovers. The large stimulation of cyclooxygenase velocity has become an important criterion for evaluation of putative PGHS reaction mechanisms. This criterion has been a major weakness of branched-chain tyrosyl radical mechanisms which correctly predict many other cyclooxygenase characteristics. Our computer simulations based on a branched-chain mechanism indicated that the uncorrected oxygen electrode signals commonly used to monitor activity can seriously overestimate the effects of cosubstrate on cyclooxygenase velocity. The simulation results prompted re-examination of the effect of several cosubstrates (phenol, acetaminophen, N,N,N',N'-tetramethylphenylenediamine, and Trolox) on PGHS-1 cyclooxygenase velocity. Cyclooxygenase kinetics were examined at reduced temperature or elevated pH, where the oxygen electrode signal can be corrected to provide reliable oxygen consumption trajectories. The cosubstrates produced only a slight (10-60%) stimulation of the cyclooxygenase velocity. Peroxidase cosubstrates thus have a much smaller stimulatory effect on cyclooxygenase velocity than previously reported. This corrects a longstanding misperception of cosubstrate effects, provides more realistic kinetic constraints on PGHS mechanisms, and removes what was a major deficiency of branched-chain tyrosyl radical mechanisms.by guest on May 7, 2018 http://www.jbc.org/ Downloaded from 3 The cyclooxygenase activity of prostaglandin H synthase isoforms 1 and 2 1 is a key control point in the biosynthesis of all prostanoid lipid mediators (1,2). Besides the cyclooxygenase activity, both PGHS-1 and -2 have a heme-dependent peroxidase activity (1). The PGHS peroxidase catalytic cycle resembles that of other heme-dependent peroxidases: the ferric heme of the resting enzyme is oxidized to Intermediate I (Compound I) by reaction with peroxide, and electron-donating cosubstrates complete the peroxidase catalytic cycle by reducing Intermediate I to Compound II and then to resting enzyme (3). Endogenous peroxidase cosubstrates, such as uric acid, are present in cell cytosol (4).Cosubstrates for PGHS peroxidase also have been reported to affect PGHS cyclooxygenase activity, attenuating self-inactivation and increasing the catalytic velocity (5-13). The protective action of cellular reductants greatly increases the number of catalytic turnovers before cyclooxygenase selfinactivation, thereby increasing the capacity for synthesis of potent lipid mediators (14). For its part, the large stimulation of cyclooxygenase velocity by cosubstrate has become a defining characteristic of catalytic behavior and an important criterion for evaluation of potential PGHS reaction mechanisms (11,13,15 (15,27,28). However, one perceived deficiency of branched-chain mechanisms has been an inabili...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.