Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (o30 mW), and are able to detect pressing forces as low as 13 Pa with fast response time (o17 ms), high sensitivity (41.14 kPa À 1 ) and high stability (450,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.
Abstract-This paper presents the enhanced stiffness modeling and analysis of robot manipulators, and a methodology for their stiffness identification and characterization. Assuming that the manipulator links are infinitely stiff, the enhanced stiffness model contains: 1) the passive and active stiffness of the joints and 2) the active stiffness created by the change in the manipulator configuration, and by external force vector acting upon the manipulator end point. The stiffness formulation not accounting for the latter is known as conventional stiffness formulation, which is obviously not complete and is valid only when: 1) the manipulator is in an unloaded quasistatic configuration and 2) the manipulator Jacobian matrix is constant throughout the workspace. The experimental system considered in this study is a Motoman SK 120 robot manipulator with a closed-chain mechanism. While the deflection of the manipulator end point under a range of external forces is provided by a high precision laser measurement system, a wrist force/torque sensor measures the external forces. Based on the experimental data and the enhanced stiffness model, the joint stiffness values are first identified. These stiffness values are then used to prove that conventional stiffness modeling is incomplete. Finally, they are employed to characterize stiffness properties of the robot manipulator. It has been found that although the component of the stiffness matrix differentiating the enhanced stiffness model from the conventional one is not always positive definite, the resulting stiffness matrix can still be positive definite. This follows that stability of the stiffness matrix is not influenced by this stiffness component. This study contributes to the previously reported work from the point of view of using the enhanced stiffness model for stiffness identification, verification and characterization, and of new experimental results proving that the conventional stiffness matrix is not complete and is valid under certain assumptions.
This work has an innovative approach for the development of nanorobots with sensors for medicine. The nanorobots operate in a virtual environment comparing random, thermal and chemical control techniques. The nanorobot architecture model has nanobioelectronics as the basis for manufacturing integrated system devices with embedded nanobiosensors and actuators, which facilitates its application for medical target identification and drug delivery. The nanorobot interaction with the described workspace shows how time actuation is improved based on sensor capabilities. Therefore, our work addresses the control and the architecture design for developing practical molecular machines. Advances in nanotechnology are enabling manufacturing nanosensors and actuators through nanobioelectronics and biologically inspired devices. Analysis of integrated system modeling is one important aspect for supporting nanotechnology in the fast development towards one of the most challenging new fields of science: molecular machines. The use of 3D simulation can provide interactive tools for addressing nanorobot choices on sensing, hardware architecture design, manufacturing approaches, and control methodology investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.