Supercapacitors are beneficial as energy storage devices and can obtain high capacitance values greater than conventional capacitors and high power densities compared to batteries. However, in order to improve upon the overall cost, energy density, and charge-discharge rates, the electrode material of supercapacitors needs to be fine-tuned with an inexpensive, high conducting source. We prepared a Co(III) complex and polypyrrole (PPy) composite thin films (CoN 4 - PPy) that was electrochemically deposited on the surface of a glassy carbon working electrode. Cyclic voltammetry studies indicate the superior performance of CoN 4 -PPy in charge storage in acidic electrolyte compared to alkaline and organic solutions. The CoN 4 -PPy material generated the highest amount of specific capacitance (up to 721.9 F/g) followed by Co salt and PPy (Co-PPy) material and PPy alone. Cyclic performance studies showed the excellent electrochemical stability of the CoN 4 -PPy film in the acidic medium. Simply electrochemically depositing an inexpensive Co(III) complex with a high electrically conducting polymer of PPy delivered a superior electrode material for supercapacitor applications. Therefore, the results indicate that novel thin films derived from Co(III) metal complex and PPy can store a large amount of energy and maintain high stability over many cycles, revealing its excellent potential in supercapacitor devices.
Graphene-based nanomaterials have received significant attention in the last decade due to their interesting properties. Its electrical and thermal conductivity and strength make graphene well suited for a variety of applications, particularly for use as a composite material in plastics. Furthermore, much work is taking place to utilize graphene as a biomaterial for uses such as drug delivery and tissue regeneration scaffolds. Owing to the rapid progress of graphene and its potential in many marketplaces, the potential toxicity of these materials has garnered attention. Graphene, while simple in its purest form, can have many different chemical and physical properties. In this paper, we describe our toxicity evaluation of pristine graphene and a functionalized graphene sample that has been oxidized for enhanced hydrophilicity, which was synthesized from the pristine sample. The samples were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, infrared spectroscopy, thermogravimetric analysis, zeta-potential, atomic force microscopy and electron microscopy. We discuss the disagreement between the size of imaged samples analyzed by atomic force microscopy and by transmission electron microscopy. Furthermore, the samples each exhibit quite different surface chemistry and structure, which directly affects their interaction with aqueous environments and is important to consider when evaluating the toxicity of materials both in vitro and in vivo.
Platinum electrodes are commonly used electrocatalysts for oxygen reduction reactions (ORR) in fuel cells. However, this material is not economical due to its high cost and scarcity. We prepared an Mn(III) catalyst supported on graphene and further coated with polydopamine, resulting in superior ORR activity compared to the uncoated PDA structures. During ORR, a peak potential at 0.433 V was recorded, which is a significant shift compared to the uncoated material’s −0.303 V (both versus SHE). All the materials reduced oxygen in a wide pH range via a four-electron pathway. Rotating disk electrode and rotating ring disk electrode studies of the polydopamine-coated material revealed ORR occurring via 4.14 and 4.00 electrons, respectively. A rate constant of 6.33 × 106 mol−1s−1 was observed for the polydopamine-coated material–over 4.5 times greater than the uncoated nanocomposite and superior to those reported for similar carbon-supported metal catalysts. Simply integrating an inexpensive bioinspired polymer coating onto the Mn-graphene nanocomposite increased ORR performance significantly, with a peak potential shift of over +730 mV. This indicates that the material can reduce oxygen at a higher rate but with lower energy usage, revealing its excellent potential as an ORR electrocatalyst in fuel cells.
Upconversion nanoparticles (UCNPs) convert low‐energy infrared (IR) or near‐infrared (NIR) photons into high‐energy emission radiation ranging from ultraviolet to visible through a photon upconversion process. In comparison to conventional fluorophores, such as organic dyes or semiconductor quantum dots, lanthanide‐ion‐doped UCNPs exhibit high photostability, no photoblinking, no photobleaching, low cytotoxicity, sharp emission lines, and long luminescent lifetimes. Additionally, the use of IR or NIR for excitation in such UCNPs reduces the autofluorescence background and enables deeper penetration into biological samples due to reduced light scattering with negligible damage to the samples. Because of these attributes, UCNPs have found numerous potential applications in biological and medicinal fields as novel fluorescent materials. Different upconversion mechanisms commonly observed in UCNPs, various methods that are used in their synthesis, and surface modification processes are discussed. Recent applications of Ln‐UCNPs in the biological and medicinal fields, including in vivo and in vitro biological imaging, multimodal imaging, photodynamic therapy, drug delivery, and antibacterial activity, are also presented.
In this study, an injectable thermoresponsive hydroxypropyl guar-graft-poly(N-vinylcaprolactam) (HPG-g-PNVCL) copolymer was synthesized by graft polymerization. The reaction parameters such as temperature, time, monomer, and initiator concentrations were varied. In addition, the HPG-g-PNVCL copolymer was modified with nano-hydroxyapatite (n-HA) by in situ covalent cross-linking using divinyl sulfone (DVS) cross-linker to obtain HPG-g-PNVCL/n-HA/DVS composite material. Grafted copolymer and composite materials were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, proton nuclear magnetic resonance spectroscopy (1H NMR), and differential scanning calorimetry. The morphology of the grafted copolymer (HPG-g-PNVCL) and the composite (HPG-g-PNVCL/n-HA/DVS) was examined using scanning electron microscopy (SEM), which showed interconnected porous honeycomb-like structures. Using Ultraviolet−visible spectroscopy, low critical solution temperature for HPG-g-PNVCL was observed at 34 °C, which is close to the rheology gel point at 33.5 °C. The thermoreversibility of HPG-g-PNVCL was proved by rheological analysis. The HPG-g-PNVCL hydrogel was employed for slow release of the drug molecule. Ciprofloxacin, a commonly known antibiotic, was used for sustainable release from the HPG-g-PNVCL hydrogel as a function of time at 37 °C because of viscous nature and thermogelation of the copolymer. In vitro cytotoxicity study reveals that the HPG-g-PNVCL thermogelling polymer works as a biocompatible scaffold for osteoblastic cell growth. Additionally, in vitro biomineralization study of HPG-g-PNVCL/n-HA/DVS was conducted using a simulated body fluid, and apatite-like structure formation was observed by SEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.