IFNalpha/beta, IL-12, and IL-15 regulate NK cell activation and expansion, but signals triggering resolution of the NK response upon induction of adaptive immunity remain to be defined. We now report that IL-21, a product of activated T cells, may serve this function. Mice lacking IL-21R (IL-21R(-/-)) had normal NK cell development but no detectable responses to IL-21. IL-21 enhanced cytotoxic activity and IFNgamma production by activated murine NK cells but did not support their viability, thus limiting their duration of activation. Furthermore, IL-21 blocked IL-15-induced expansion of resting NK cells, thus preventing the initiation of further innate responses. In contrast, IL-21 enhanced the proliferation, IFNgamma production, and cytotoxic function of CD8(+) effector T cells in an allogeneic MLR. These observations suggest that IL-21 promotes the transition between innate and adaptive immunity.
Substantial evidence exists supporting direct roles for ErbB-2/neu and Src kinase activation in breast cancer. The Csk homologous kinase (CHK) is a recently identified tyrosine kinase which, like Csk, phosphorylates the C-terminal tyrosine of Src kinases, resulting in inactivation of these enzymes. Recently, we observed that CHK is associated with the ErbB-2/neu receptor upon heregulin stimulation of breast cancer cells. Here, we report that CHK expression was observed in 70 out of 80 primary breast cancer specimens but not in normal breast tissues (0/19). Confocal microscopy analysis revealed colocalization of CHK with ErbB-2 in these primary specimens (6/6). In addition, we observed that the cytoplasmic domain of the ErbB-2/neu receptor is sufficient for its interaction with the CHK SH2 domain. Phosphopeptide inhibition of the in vitro interaction of CHK SH2 or native CHK with ErbB-2/neu, as well as site-directed mutagenesis of ErbB-2/neu, indicated that CHK SH2 binds to Tyr 1253 of ErbB-2/neu. Interestingly, autophosphorylation at this site confers oncogenicity to this receptor. Moreover, CHK was able to down-regulate ErbB-2/neu-activated Src kinases. Overexpression of CHK in MCF-7 breast cancer cells markedly inhibited cell growth and proliferative response to heregulin as well as decreased colony formation in soft agar. These studies indicate that CHK binds, via its SH2 domain, to Tyr 1253 of the activated ErbB-2/neu and down-regulates the ErbB-2/neu-mediated activation of Src kinases, thereby inhibiting breast cancer cell growth. These data strongly suggest that CHK is a novel negative growth regulator in human breast cancer.Breast cancer is the second leading cause of cancer death among women in the United States and is the leading cause of death among women aged 30 to 70 (1-3). The majority of breast carcinomas appear to be sporadic and have a complex accumulation of molecular and cellular abnormalities that constitute the malignant phenotype (4 -5). In many cases, random onset of breast cancer has been correlated with increased ErbB-2/neu receptor expression and Src tyrosine kinase activity (6 -12). Substantial evidence indicates that the c-Src proto-oncogene and ErbB-2/neu play important roles in breast cancer (7, 13). Src kinase activity is elevated in ErbB-2/neu (Neu) induced mammary tumors, and this elevated activity correlates with its capacity to physically associate with ErbB-2/neu (14 -15). A common pathway linking the activation mechanisms in ErbB-2/neu amplification in breast cancer is increased tyrosine kinase activity, which leads to cellular transformation (16).Four members of the ErbB (HER) family are presently known: p170ErbB-1 (epidermal growth factor receptor (EGF-R) 1 ), p185 ErbB-2 , p180 ErbB-3 , and p180 17,18). In particular, the overexpression of the p185ErbB-2 correlates with a poor clinical prognosis in breast cancer (9). ErbB-2/neu undergoes autophosphorylation on five tyrosine residues that are located on its non-catalytic C terminus (19,20). The autophosphorylated tyrosine re...
We recently cloned the cDNA which encodes a novel megakaryocyte-associated tyrosine kinase termed MATK. In this study, we have cloned and characterized the human MATK gene as well as the murine homolog of human MATK cDNA and performed functional studies of its translated product. Comparison of the deduced amino acid sequences of human and murine MATK cDNAs revealed 85% homology, indicating that MATK is highly conserved in mouse and human. The human gene consists of 13 exons interrupted by 12 introns. The genetic units which encode the SH3 and SH2 domains are located on separate exons. The putative ATP binding site (GXGXXG) is localized on exon 7, and the entire catalytic domain is subdivided into seven exons (7-13). Somatic cell hybrid analysis indicated that human MATK gene is located on chromosome 19 while the murine Matk gene is located on chromosome 10. The immediate 5'-flanking region was highly rich in GC sequences, and potential cis-acting elements were identified including several SP1, GATA-1, APRE, and APRE1. Antisense oligonucleotides directed against MATK mRNA sequences significantly inhibited megakaryocyte progenitor proliferation. Functional studies indicated that MATK can phosphorylate the carboxyl-terminal conserved tyrosine of the Src protein. These results support the notion that MATK acts as a regulator of p60c-src in megakaryocytic cells and participates in the pathways regulating growth of cells of this lineage.
We have further characterized the biological activities, mechanism of action, and target cell populations of recombinant human and murine thrombopoietin (rhTPO and rmTPO) in in vitro human and murine model systems. Alone, hTPO or mTPO stimulated the maturation of immature murine megakaryoblasts as measured in a single cell assay. The combination of hTPO or mTPO and interleukin-6 (IL-6) resulted in a further increase in megakaryocyte differentiation in this system. Murine TPO stimulated mouse megakaryocyte progenitor development. Human megakaryocyte progenitor development was potentiated by hTPO alone and further augmented in the presence of the early-acting cytokines (IL-3) or kit ligand/stem cell factor (KL/SCF). To further define the mechanism of action of TPO, neutralization studies were performed with antisera to IL-3, granulocyte-macrophage colony-stimulating factor (GM- CSF), IL-1 beta, and IL-11. No diminution in TPO activity was observed in the presence of these antisera. Moreover, because adhesive interactions are known to modulate hematopoiesis, we studied whether hTPO might alter such interactions between human bone marrow (BM) megakaryocytes and human BM stromal fibroblasts. No changes were observed in either megakaryocyte expression of the surface molecules lymphocyte function-associated antigen-1, very late activation antigen- 4, or intercellular adhesion molecule-1 or the adhesion of megakaryocytes to stromal fibroblasts after treatment with the growth factor. Furthermore, no induction of secretion of the cytokines IL-1 alpha, IL-1 beta, GM-CSF, IL-6, granulocyte-CSF, tumor necrosis factor- alpha, transforming growth factor-beta 1, or transforming growth factor- beta 2 by primary human BM megakaryocytes was noted after treatment of the cells with hTPO. To address whether TPO affects very primitive hematopoietic progenitors, we studied the residual cells from the BMs of mice treated with high doses of 5-fluorouracil. Although no effect of mTPO alone was noted on the viability or replication of such primitive murine progenitor populations, the triple combination of IL-3 + KL/SCF + TPO stimulated growth of megakaryocyte progenitors. These results indicate that TPO is a highly lineage-specific growth factor whose primary biological effects are likely to be direct modulation of the growth and maturation of committed megakaryocyte precursors and immature megakaryoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.