Bioactivities of 42 didemnin congeners, either isolated from the marine tunicates Trididemnun solidum and Aplidium albicans or prepared synthetically and semisynthetically, have been compared. The growth inhibition of various murine and human tumor cells and plaque reduction of HSV-1 and VSV grown on cultured mammalian cells were used to assess cytotoxicity and antiviral activity. Biochemical assays for macromolecular synthesis (protein, DNA, and RNA) and enzyme inhibition (dihydrofolate reductase, thymidylate synthase, DNA polymerase, RNA polymerase, and topoisomerases I and II) were also performed to specify the mechanisms of action of each analogue. Immunosuppressive activity of the didemnins was determined using a mixed lymphocyte reaction (MLR) assay. These assays revealed that the native cyclic depsipeptide core is an essential structural requirement for most of the bioactivites of the didemnins, especially for cytotoxicities and antiviral activities. The linear side-chain portion of the peptide can be altered with a gain, in some cases, of bioactivities. In particular, dehydrodidemnin B, tested against several types of tumor cells and in in vivo studies in mice, as well as didemnin M, tested for the mixed lymphocyte reaction and graft vs host reaction in murine systems, showed remarkable gains in their in vitro and in vivo activities compared to didemnin B.
BackgroundChanges in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose‐6‐phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via glucose 6‐phosphate (G6P) accumulation.Methods and ResultsWe subjected the working rat heart ex vivo to a high workload in the presence of different energy‐providing substrates including glucose, glucose analogues, and noncarbohydrate substrates. We observed an association between G6P accumulation, mTOR activation, endoplasmic reticulum (ER) stress, and impaired contractile function, all of which were prevented by pretreating animals with rapamycin (mTOR inhibition) or metformin (AMPK activation). The histone deacetylase inhibitor 4‐phenylbutyrate, which relieves ER stress, also improved contractile function. In contrast, adding the glucose analogue 2‐deoxy‐d‐glucose, which is phosphorylated but not further metabolized, to the perfusate resulted in mTOR activation and contractile dysfunction. Next we tested our hypothesis in vivo by transverse aortic constriction in mice. Using a micro‐PET system, we observed enhanced glucose tracer analog uptake and contractile dysfunction preceding dilatation of the left ventricle. In contrast, in hearts overexpressing SERCA2a, ER stress was reduced and contractile function was preserved with hypertrophy. Finally, we examined failing human hearts and found that mechanical unloading decreased G6P levels and ER stress markers.ConclusionsWe propose that glucose metabolic changes precede and regulate functional (and possibly also structural) remodeling of the heart. We implicate a critical role for G6P in load‐induced mTOR activation and ER stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.