Retinal pigment epithelium (RPE) dysfunction and loss are a hallmark of non-neovascular age-related macular degeneration (NNAMD). Without the RPE, a majority of overlying photoreceptors ultimately degenerate, leading to severe, progressive vision loss. Clinical and histological studies suggest that RPE replacement strategies may delay disease progression or restore vision. A prospective, interventional, U.S. Food and Drug Administration-cleared, phase 1/2a study is being conducted to assess the safety and efficacy of a composite subretinal implant in subjects with advanced NNAMD. The composite implant, termed the California Project to Cure Blindness-Retinal Pigment Epithelium 1 (CPCB-RPE1), consists of a polarized monolayer of human embryonic stem cell-derived RPE (hESC-RPE) on an ultrathin, synthetic parylene substrate designed to mimic Bruch's membrane. We report an interim analysis of the phase 1 cohort consisting of five subjects. Four of five subjects enrolled in the study successfully received the composite implant. In all implanted subjects, optical coherence tomography imaging showed changes consistent with hESC-RPE and host photoreceptor integration. None of the implanted eyes showed progression of vision loss, one eye improved by 17 letters and two eyes demonstrated improved fixation. The concurrent structural and functional findings suggest that CPCB-RPE1 may improve visual function, at least in the short term, in some patients with severe vision loss from advanced NNAMD.
hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects.
PurposeTo investigate whether sheets of retina organoids derived from human embryonic stem cells (hESCs) can differentiate, integrate, and improve visual function in an immunodeficient rat model of severe retinal degeneration (RD).Methods3D hESC-derived retina organoids were analyzed by quantitative PCR and immunofluorescence. Sheets dissected from retina organoids (30–65 days of differentiation) were transplanted into the subretinal space of immunodeficient rho S334ter-3 rats. Visual function was tested by optokinetic testing and electrophysiologic recording in the superior colliculus. Transplants were analyzed at 54 to 300 days postsurgery by immunohistochemistry for donor and retinal markers.ResultsRetina organoids contained multiple retinal cell types, including progenitor populations capable of developing new cones and rods. After transplantation into an immunodeficient rat model of severe RD, the transplanted sheets differentiated, integrated, and produced functional photoreceptors and other retinal cells, according to the longer human developmental timetable. Maturation of the transplanted retinal cells created visual improvements that were measured by optokinetic testing and electrophysiologic recording in the superior colliculus. Immunohistochemistry analysis indicated that the donor cells were synaptically active. Extensive transplant projections could be seen within the host RD retina. Optical coherence tomography imaging monitored long-term transplant growth and survival up to 10 months postsurgery.ConclusionsThese data demonstrate that the transplantation of sheets dissected from hESC-derived retina organoids is a potential therapeutic method for restoring vision in advanced stages of RD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.