In healing myocardial infarction, myofibroblast- and cardiomyocyte-specific activation of Smad3 has contrasting functional outcomes that may involve activation of an integrin/reactive oxygen axis.
Rationale: TGF (transforming growth factor)-β is critically involved in myocardial injury, repair, and fibrosis, activating both Smad (small mothers against decapentaplegic)-dependent and non-Smad pathways. The in vivo role of TGF-β signaling in regulation of macrophage function is poorly understood. We hypothesized that in the infarcted myocardium, activation of TGF-β/Smad signaling in macrophages may regulate repair and remodeling. Objective: To investigate the role of macrophage-specific TGF-β Smad3 signaling in a mouse model of myocardial infarction and to dissect the mechanisms mediating Smad-dependent modulation of macrophage function. Methods and Results: TGF-βs markedly activated Smad3 in macrophages, without affecting Smad-independent pathways. Phagocytosis rapidly and directly activated macrophage Smad3, in the absence of active TGF-β release. MyS3KO (myeloid cell–specific Smad3 knockout) mice had no baseline defects but exhibited increased late mortality and accentuated dilative postmyocardial infarction remodeling. Adverse outcome in infarcted MyS3KO mice was associated with perturbations in phagocytic activity, defective transition of macrophages to an anti-inflammatory phenotype, scar expansion, and accentuated apoptosis of border zone cardiomyocytes. In vitro, Smad3 null macrophages exhibited reduced expression of genes associated with eat-me signals, such as Mfge8 (milk fat globule-epidermal growth factor factor 8), and reduced capacity to produce the anti-inflammatory mediators IL (interleukin)-10 and TGF-β1, and the angiogenic growth factor VEGF (vascular endothelial growth factor). Mfge8 partly rescued the phagocytic defect of Smad3 null macrophages, without affecting inflammatory activity. Impaired anti-inflammatory actions of Smad3 null macrophages were associated with marked attenuation of phagocytosis-induced PPAR (peroxisome proliferator-activated receptor) expression. MyS3KO mice had no significant alterations in microvascular density and interstitial fibrosis in remodeling myocardial segments. Conclusions: We demonstrate that Smad3 critically regulates function of infarct macrophages, by mediating acquisition of a phagocytic phenotype and by contributing to anti-inflammatory transition. Smad3-dependent actions in macrophages protect the infarcted heart from adverse remodeling.
Rationale: The heart contains abundant interstitial and perivascular fibroblasts. Traditional views suggest that, under conditions of mechanical stress, cytokines, growth factors and neurohumoral mediators stimulate fibroblast activation, inducing extracellular matrix protein synthesis, and promoting fibrosis and diastolic dysfunction. Members of the Transforming Growth Factor (TGF)β family are upregulated and activated in the remodeling myocardium and modulate phenotype and function of all myocardial cell types through activation of intracellular effector molecules, the Smads, and through Smad-independent pathways. Objectives: To examine the role of fibroblast-specific TGF-β/Smad3 signaling in the remodeling pressure-overloaded myocardium. Methods and Results: We examined the effects of cell-specific Smad3 loss in activated periostin-expressing myofibroblasts using a mouse model of cardiac pressure overload, induced through transverse aortic constriction (TAC). Surprisingly, myofibroblast-specific Smad3 knockout (FS3KO) mice exhibited accelerated systolic dysfunction following pressure overload, evidenced by an early 40% reduction in ejection fraction after 7 days of TAC. Accelerated systolic dysfunction in pressure-overloaded FS3KO mice was associated with accentuated matrix degradation and generation of collagen-derived matrikines, accompanied by cardiomyocyte myofibrillar loss and apoptosis, and by enhanced macrophage-driven inflammation. In vitro, TGF-β1, TGF-β2 and TGF-β3 stimulated a Smad3-dependent matrix-preserving phenotype in cardiac fibroblasts, suppressing matrix metalloproteinase (MMP)3 and MMP8 synthesis and inducing tissue inhibitor of metalloproteinases (TIMP)1. In vivo, administration of an MMP8 inhibitor attenuated early systolic dysfunction in pressure-overloaded FS3KO mice, suggesting that the protective effects of activated cardiac myofibroblasts in the pressure-overloaded myocardium are,
The immune system plays a critical role in both repair and remodeling of the infarcted myocardium. Danger signals released by dying cardiomyocytes mobilize, recruit, and activate immune cells, triggering an inflammatory reaction. CXC chemokines containing the ELR motif attract neutrophils, while CC chemokines mediate recruitment of mononuclear cell subpopulations, contributing to clearance of the infarct from dead cells and matrix debris. Immune cell subsets also participate in suppression and containment of the postinfarction inflammatory response by secreting anti-inflammatory mediators, such as IL-10 and TGF-β. As proinflammatory signaling is suppressed, macrophage subpopulations, mast cells and lymphocytes, activate fibrogenic and angiogenic responses, contributing to scar formation. In the viable remodeling myocardium, chronic activation of immune cells may promote fibrosis and hypertrophy. This review discusses the role of immune cells in repair and remodeling of the infarcted myocardium. Understanding the role of immune cells in myocardial infarction is critical for the development of therapeutic strategies aimed at protecting the infarcted heart from adverse remodeling. Moreover, modulation of immune cell phenotype may be required in order to achieve the visionary goal of myocardial regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.