Classical swine fever (CSF) is a highly contagious swine infectious disease and causes significant economic losses for the pig industry worldwide. The objective of this study was to determine whether small molecule metabolites contribute to the pathogenesis of CSF. Birefly, serum metabolomics of CSFV Shimen strain-infected piglets were analyzed by ultraperformance liquid chromatography/electrospray ionization time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) in combination with multivariate statistical analysis. In CSFV-infected piglets at days 3 and 7 post-infection changes were found in metabolites associated with several key metabolic pathways, including tryptophan catabolism and the kynurenine pathway, phenylalanine metabolism, fatty acid and lipid metabolism, the tricarboxylic acid and urea cycles, branched-chain amino acid metabolism, and nucleotide metabolism. Several pathways involved in energy metabolism including fatty acid biosynthesis and β-oxidation, branched-chain amino acid metabolism, and the tricarboxylic acid cycle were significantly inhibited. Changes were also observed in several metabolites exclusively associated with gut microbiota. The metabolomic profiles indicate that CSFV-host gut microbiome interactions play a role in the development of CSF.
Clostridium perfringens is a Gram-positive, anaerobic, spore-forming bacterium that can induces gas gangrene or enteritis in poultry and humans and many other mammalian species. Here, we report an outbreak of C. perfringens type A and type C coinfection in wild boars ( Sus scrofa ). In February 2016, 10 dead wild boars, including two fresh carcasses, were found in Zhaosu County, Xinjiang Province, People's Republic of China. The two fresh carcasses were included in this study. Two strains of C. perfringens were isolated, identified, genotyped, and phylogenetically analyzed. Based on postmortem examination, bacterium isolation and identification, enterotoxin detection, and auxiliary tests, we made a diagnosis that the wild boar were killed by C. perfringens . Our findings provide the evidence that wild boar can be killed by C. perfringens intoxication. Wild boars are important reservoirs for many zoonotic agents. Therefore, more actions should be taken on the surveillance, prevention, and control of wild pig-borne diseases.
The complete genome sequence of a sub-subgenotype 2.1i isolate of classical swine fever virus (CSFV), GD317/2011, was determined. Notably, GD317/2011 is distant from the sub-subgenotype 2.1b isolate HEBZ at genes of Erns, E1, E2, P7, NS2, NS5A and the 3′-nontranslated region (3′-NTR) but is closely related to that at genes of Npro, Core, NS3, NS4A, NS4B, and NS5B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.