Seed germination is the stage in which plants are most sensitive to abiotic stress, including salt stress (SS). SS affects plant growth and performance through ion toxicity, decreasing seed germination percentage and increasing the germination time. Several priming treatments were used to enhance germination under SS. The objectives of this study were (1) to identify priming treatments to shorten the emergence period, (2) to evaluate priming treatments against the SS, and (3) to induce synchronized seed germination. Salt-sensitive ‘Burpee Bibb’ lettuce seeds were treated with 0.05% potassium nitrate, 3 mM gibberellic acid, and distilled water. All the primed and non-primed seeds were subjected to 100 mM sodium chloride (NaCl) or 0 mM NaCl (control). The seven-day experiment, arranged in a complete randomized block design with four replications, was conducted in a growth chamber maintained with 16/8 h photoperiod (light/dark), 60% relative humidity, and a day/night temperature of 22/18 °C. The result indicated that hydro-primed (HP) seeds were better synchronized under SS. Similarly, fresh mass (FM) and dry mass (DM) of cotyledon, hypocotyl, and radicle were the highest in HP lettuce regardless of SS. Electrolyte leakage was the lowest in the HP lettuce, while other priming methods under SS increased membrane permeability, leading to osmotic stress and tissue damage. Overall, hydro-priming can be a good priming method for synchronizing germination and increasing FM and DM by creating the least osmotic stress and ion toxicity in lettuce under SS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.