Double diffusive convective flow of nanofluid within a porous trapezoidal cavity of various aspect ratios consisting of Al2O3 nanoparticle in the presence of applied magnetic field in the direction perpendicular to the parallel top and bottom walls is analysed.
The side walls of the cavity are maintained at constant temperature and concentration while its horizontal walls are insulated and impermeable. The irregular physical domain of the problem is transformed to a regular unit square computational domain. The governing equations have been solved
by second order of finite difference method (FDM). Based upon numerical predictions, the effects of pertinent parameters such as Rayleigh number, Darcy number, aspect ratio, solid volume fraction and inclination angle on the flow and temperature fields and the heat transfer performance of
the enclosure are examined. It is found that the intensity of heat and mass transfer increases with the increase in the Darcy number and aspect ratio. It is also observed that as the solid volume fraction increases there is increase in the average Nusselt number but reverse effect is observed
on the average Sherwood number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.