Originally fixed and uniform circular pitches of flex spline (FS) teeth of a ‘Strain Wave Gearing’ or ‘Harmonic Drive’ (HD) experience variations in pitch lengths when teeth move on ‘strain wave generating’ oval-shaped cam. This is due to varying root deformations of teeth. In case of teeth with widely used involute profile, away from the contacts on line of action through pitch point, they definitely experience force closeness to or separation from the circular spline’s (CS) originally conjugate tooth. We have estimated the deformed pitch distances at no load considering that FS teeth remain rigid while the rim deforms. The geometry of the oval-shaped pitch curve which is parallel to the elliptical outer profile of the cam is also defined. Similarly to maintain an elliptical pitch curve of FS, the oval cam is also defined. Both cases of tooth mesh of undeformed FS with CS and tooth mesh of deformed FS with CS, with involute teeth, are considered to find out tooth positions. Geometries of involute teeth profiles in mesh are examined and compared considering oval-shaped (on deformation) base drum of FS, whereas the base circle of the CS remained circular.
Purpose
In a harmonic drive during assembly of its components like strain wave generating (SWG) cam, flexspline (FS) and circular spline, a gap is formed between the cam’s outer surface and the FS cup inner surface due to mismatching. This gap, which is known as “Coning”, plays a vital role in the flow of lubricant at that interface. This paper aims to analyse the coning phenomenon and the lubrication mechanism.
Design/methodology/approach
In the present investigation, the geometry of the coning gap and its variation with the SWG cam rotation are established. Essentially, the deflection of FS cup and deformation of SWG cam (bearing outer race) are derived to find the gap due to coning. Next, the hydrodynamic lubrication equation is solved to get pressure profiles for this gap under suitable boundary conditions assuming non-Newtonian lubrication.
Findings
Methods of estimating the coning gap and lubrication pressure profiles are established. Effects of non-Newtonian terms (coupling number and non-dimentionalized characteristic length) and SWG length (finite, long and short) on pressure profiles are also shown. All analyses are done in non-dimensionalized form.
Originality/value
Establishing the geometry of coning and non-Newtonian hydrodynamic lubrication aspects in the coning in the FS cup and SWG cam interface are the originality of the present investigation.
A split cam design is proposed to solve the problem of assembly of the single piece cam in the flexible raced bearing of an earlier proposed novel harmonic drive system, which shows better torque characteristics and capacities in comparison to the conventional one of same size with oval-shaped strain wave generating cam. The cam profile has circular arcs at two working zones at 180° phases. The proposed profile shape is identified as the cause of trouble in assembly if the cam is made single piece. The split cam is made of two identical pieces having circular arc edges. These pieces constitute the cam in assembly after putting it inside the inner race of the flex bearing and adjusted by an adjuster. The design, kinematics, and the assembly method of the proposed split cam are presented in this article. The split cam arrangement not only solves the assembly problem but also gives a scope of fine adjustment of center distance (eccentricity). Such an adjustment is not possible in conventional oval wave generating cam. Stresses in flex gear cups assembled with both type cams at load and no-load conditions are estimated using finite element method. Some results are verified experimentally. Although the flex gear cup with the proposed split cam experiences lower stresses at load transmitting active gear contact zones, it shows higher stresses at some non-active zones (where teeth are free of load). It is apparent from results that stresses at those non-active zones do not increase substantially with the increase in torque, as they are away from active zones.
Circular pitches of flex spline teeth of a ‘Strain Wave Gearing’, also known as a ‘Harmonic Drive’, are deformed when the Strain Wave Generating Cam is inserted into the flex spline cup. In the present work the deformed pitch distances considering that flex spline teeth remain rigid while the rim deforms, are estimated. No applied load is considered. It is also shown that if the cam is elliptical then the pitch curve is not an ellipse and vice versa. Geometries of such curves can be defined following the analysis presented in this paper. Cases of both undeformed flex spline with circular spline and deformed flex spline with circular spline, with involute teeth, are considered to find out tooth positions. Geometries of involute teeth profiles in mesh are examined and compared considering oval shaped (on deformation) base drum of flex spline where as base circle of circular spline remained circular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.