<span lang="EN-US">Automated flaw identification has become more important in medical imaging. For patient preparation, unaided prediction of tumor (brain) detection in the magnetic resonance imaging process (MRI) is critical. Traditional ways of recognizing z are intended to make radiologists' jobs easier. The size and variety of molecular structures in brain tumors is one of the issues with MRI brain tumor diagnosis. Deep learning (DL) techniques (artificial neural network (ANN), naive Bayes (NB), multi-layer perceptron (MLP)) are used in this article to detect brain cancers in MRI data. The preprocessing techniques are used to eliminate textural features from the brain MRI images. These characteristics are then utilized to train a machine-learning system.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.