Summary
A sensitivity analysis for an observational study assesses how much bias, due to nonrandom assignment of treatment, would be necessary to change the conclusions of an analysis that assumes treatment assignment was effectively random. The evidence for a treatment effect can be strengthened if two different analyses, which could be affected by different types of biases, are both somewhat insensitive to bias. The finding from the observational study is then said to be replicated. Evidence factors allow for two independent analyses to be constructed from the same dataset. When combining the evidence factors, the Type I error rate must be controlled to obtain valid inference. A powerful method is developed for controlling the familywise error rate for sensitivity analyses with evidence factors. It is shown that the Bahadur efficiency of sensitivity analysis for the combined evidence is greater than for either evidence factor alone. The proposed methods are illustrated through a study of the effect of radiation exposure on the risk of cancer. An R package, evidenceFactors, is available from CRAN to implement the methods of the paper.
We consider user retention analytics for online freemium role-playing games (RPGs). RPGs constitute a very popular genre of computer-based games that, along with a player's gaming actions, focus on the development of the player's in-game virtual character through a persistent exploration of the gaming environment. Most RPGs follow the freemium business model in which the gamers can play for free but they are charged for premium add-on amenities. As with other freemium products, RPGs suffer from the curse of high dropout rates. This makes retention analysis extremely important for successful operation and survival of their gaming portals. Here, we develop a disciplined statistical framework for retention analysis by modelling multiple in-game player characteristics along with the dropout probabilities. We capture players' motivations through engagement times, collaboration and achievement score at each level of the game, and jointly model them using a generalized linear mixed model (glmm) framework that further includes a time-to-event variable corresponding to churn. We capture the interdependencies in a player's level-wise engagement, collaboration, achievement with dropout through a shared parameter model. We illustrate interesting changes in player behaviours as the gaming level progresses. The parameters | 103
This article proposes a practical and scalable version of the tight clustering algorithm. The tight clustering algorithm provides tight and stable relevant clusters as output while leaving a set of points as noise or scattered points, that would not go into any cluster. However, the computational limitation to achieve this precise target of tight clusters prohibits it from being used for large microarray gene expression data or any other large data set, which are common nowadays. We propose a pragmatic and scalable version of the tight clustering method that is applicable to data sets of very large size and deduce the properties of the proposed algorithm. We validate our algorithm with extensive simulation study and multiple real data analyses including analysis of real data on gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.