The appearance of strangeness in the form of hyperons within the inner core of neutron stars is expected to affect its detectable properties, such as its global structure or gravitational wave emission. This work explores the parameter space of hyperonic stars within the framework of the Relativistic Mean Field model allowed by the present uncertainties in the state-of-the-art nuclear and hypernuclear experimental data. We impose multi-physics constraints at different density regimes to restrict the parameter space: Chiral effective field theory, heavy-ion collision data, and multi-messenger astrophysical observations of neutron stars. We investigate possible correlations between empirical nuclear and hypernuclear parameters, particularly the symmetry energy and its slope, with observable properties of neutron stars. We do not find a correlation for the hyperon parameters and the astrophysical data. However, the inclusion of hyperons generates a tension between the astrophysical and heavy-ion data constraining considerably the available parameter space.
Neutron star (NS) equation of state (EoS) insensitive relations or universal relations (UR) involving neutron star bulk properties play a crucial role in gravitational-wave astronomy. Considering a wide range of equations of state originating from (i) phenomenological relativistic mean field models, (ii) realistic EoS models based on different physical motivations, and (iii) polytropic EoSs described by spectral decomposition method, we update the EoS-insensitive relations involving NS tidal deformability (Multipole Love relation) and the UR between f-mode frequency and tidal deformability (f-Love relation). We analyze the binary neutron star (BNS) event GW170817 using the frequency domain TaylorF2 waveform model with updated universal relations and find that the additional contribution of the octupolar electric tidal parameter and quadrupolar magnetic tidal parameter or the change of multipole Love relation has no significant impact on the inferred NS properties. However, adding the f-mode dynamical phase lowers the 90% upper bound on Λ by 16-20% as well as lowers the upper bound of NSs radii by ∼500m. The combined URs (multipole Love and f-Love) developed in this work predict a higher median (also a higher 90% upper bound) for Λ by 6% and also predict higher radii for the binary components of GW170817 by 200-300m compared to the URs used previously in the literature. We further perform injection and recovery studies on simulated events with different EoSs in A+ detector configuration as well as with third generation (3G) Einstein telescope. In agreement with the literature, we find that neglecting f-mode dynamical tides can significantly bias the inferred NS properties, especially for low mass NSs. However, we also find that the impact of the URs is within statistical errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.