The Internet of Things (IoT)-centric concepts like augmented reality, high-resolution video streaming, self-driven cars, smart environment, e-health care, etc. have a ubiquitous presence now. These applications require higher data-rates, large bandwidth, increased capacity, low latency and high throughput. In light of these emerging concepts, IoT has revolutionized the world by providing seamless connectivity between heterogeneous networks (HetNets). The eventual aim of IoT is to introduce the plug and play technology providing the end-user, ease of operation, remotely access control and configurability. This paper presents the IoT technology from a bird's eye view covering its statistical/architectural trends, use cases, challenges and future prospects. The paper also presents a detailed and extensive overview of the emerging 5G-IoT scenario. Fifth Generation (5G) cellular networks provide key enabling technologies for ubiquitous deployment of the IoT technology. These include carrier aggregation, multiple-input multipleoutput (MIMO), massive-MIMO (M-MIMO), coordinated multipoint processing (CoMP), device-to-device (D2D) communications, centralized radio access network (CRAN), software-defined wireless sensor networking (SD-WSN), network function virtualization (NFV) and cognitive radios (CRs). This paper presents an exhaustive review for these key enabling technologies and also discusses the new emerging use cases of 5G-IoT driven by the advances in artificial intelligence, machine and deep learning, ongoing 5G initiatives, quality of service (QoS) requirements in 5G and its standardization issues. Finally, the paper discusses challenges in the implementation of 5G-IoT due to high data-rates requiring both cloud-based platforms and IoT devices based edge computing.
Engineering accreditation agencies and governmental educational bodies worldwide require programs to evaluate specific learning outcomes information for attainment of student learning and establish accountability. Ranking and accreditation have resulted in programs adopting shortcut approaches to collate cohort information with minimally acceptable rigor for Continuous Quality Improvement (CQI). With tens of thousands of engineering programs seeking accreditation, qualifying program evaluations that are based on reliable and accurate cohort outcomes is becoming increasingly complex and is high stakes. Manual data collection processes and vague performance criteria assimilate inaccurate or insufficient learning outcomes information that cannot be used for effective CQI. Additionally, due to COVID19 global pandemic, many accreditation bodies have cancelled onsite visits and either deferred or announced virtual audit visits for upcoming accreditation cycles. In this study, we examine a novel meta-framework to qualify state of the art digital Integrated Quality Management Systems for three engineering programs seeking accreditation. The digital quality systems utilize authentic OBE frameworks and assessment methodology to automate collection, evaluation and reporting of precision CQI data. A novel Remote Evaluator Module that enables successful virtual ABET accreditation audits is presented. A theory based mixed methods approach is applied for evaluations. Detailed results and discussions show how various phases of the meta-framework help to qualify the context, construct, causal links, processes, technology, data collection and outcomes of comprehensive CQI efforts. Key stakeholders such as accreditation agencies and universities can adopt this multi-dimensional approach for employing a holistic metaframework to achieve accurate and credible remote accreditation of engineering programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.