BackgroundTuberculosis (TB) is a disease which kills two million people every year and infects approximately over one-third of the world's population. The difficulty in managing tuberculosis is the prolonged treatment duration, the emergence of drug resistance and co-infection with HIV/AIDS. Tuberculosis control requires new drugs that act at novel drug targets to help combat resistant forms of Mycobacterium tuberculosis and reduce treatment duration.Methodology/Principal FindingsOur approach was to modify the naturally occurring and synthetically challenging antibiotic thiolactomycin (TLM) to the more tractable 2-aminothiazole-4-carboxylate scaffold to generate compounds that mimic TLM's novel mode of action. We report here the identification of a series of compounds possessing excellent activity against M. tuberculosis H37Rv and, dissociatively, against the β-ketoacyl synthase enzyme mtFabH which is targeted by TLM. Specifically, methyl 2-amino-5-benzylthiazole-4-carboxylate was found to inhibit M. tuberculosis H37Rv with an MIC of 0.06 µg/ml (240 nM), but showed no activity against mtFabH, whereas methyl 2-(2-bromoacetamido)-5-(3-chlorophenyl)thiazole-4-carboxylate inhibited mtFabH with an IC50 of 0.95±0.05 µg/ml (2.43±0.13 µM) but was not active against the whole cell organism.Conclusions/SignificanceThese findings clearly identify the 2-aminothiazole-4-carboxylate scaffold as a promising new template towards the discovery of a new class of anti-tubercular agents.
The nonsteroidal anti-inlammatory drugs (NSAIDs) are important class of therapeutic agents used for the treatment of pain, inlammation and fever. Nonselective inhibition of cyclooxygenase (COX-1 and COX-2) isoenzymes by classical NSAIDs is associated with undesirable side efects such as gastrointestinal (GI) and renal toxicities due to COX-1 inhibition. To circumvent this problem, several COX-2 selective inhibitors were developed with superior GI safety proile. However, the voluntary market withdrawal of potent COX-2 selective inhibitors (rofecoxib and valdecoxib) due to their severe cardiovascular toxicity which is also found to be associated with some of the traditional NSAIDs suggesting the need to relook into the entire class of NSAIDs rather than exclusively victimizing the COX-2 selective inhibitors. Furthermore, the recent evidences for the involvement of COX-2 selective inhibitors in the aetiology of many diseases, such as Alzheimer's disease, Parkinson's disease, diabetes, various cancers and so on, have gained much atention for researchers to design and develop novel COX-2 selective inhibitors with improved pharmacodynamics and pharmacokinetic proile. This chapter is focused on the detailed analysis of molecular basis of binding interactions of various NSAIDs by highlighting the role of crucial amino acid residues at the binding site of cyclooxygenase enzymes (COXs) to be considered for selective inhibition of COX-2 enzyme while emphasising the impact of signiicant CADD strategies employed for designing new potent COX-2 inhibitors with tuned selectivity.
A series of ethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-3-carboxylates 4a–f and dimethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylates 4g–k have been synthesized and evaluated for their anti-tubercular (TB) activities against H37Rv (American Type Culture Collection (ATCC) strain 25177) and multidrug-resistant (MDR) strains of Mycobacterium tuberculosis by resazurin microplate assay (REMA). Molecular target identification for these compounds was also carried out by a computational approach. All test compounds exhibited anti-tuberculosis (TB) activity in the range of 8–128 µg/mL against H37Rv. The test compound dimethyl-1-(4-fluorobenzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylate 4j emerged as the most promising anti-TB agent against H37Rv and multidrug-resistant strains of Mycobacterium tuberculosis at 8 and 16 µg/mL, respectively. In silico evaluation of pharmacokinetic properties indicated overall drug-likeness for most of the compounds. Docking studies were also carried out to investigate the binding affinities as well as interactions of these compounds with the target proteins.
Background: Recently, a series of 15 compounds with 2,4,5-trisubstitutedthiazole scaffold having 2- amino/amido/ureido functional groups attached with 5-aryl and 4-carboxylic acid/ester groups (1-15) were reported from our research group as novel potential inhibitors of carbonic anhydrase III (CA III) enzyme. Several research studies revealed the potential role of CA inhibitors as anticancer agents, giving us the impetus to further explore these compounds for their potential as anticancer agents. Objectives: The objective of this study is to investigate the potential of 2,4,5-trisubstitutedthiazole derivatives (1-15) for their possible cytotoxic activity (in vitro) and to calculate (in silico) the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties to evaluate the drug-likeness of these compounds. Methods: Cytotoxic activity (in vitro) was carried out on two breast cancer cell lines (MCF7 and MDA231), and lymphoblastoid human erythroleukemia cell line (K562) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Doxorubicin was used as a positive control. ADMET properties were calculated (in silico) using QikProp module of Schrodinger. Results: Compounds 6 and 9 with a phenylureido group at 2-position, and a methyl-carboxylate moiety at 4-position having para-tolyl and benzyl moiety, respectively at the 5-position of the thiazole ring showed significant cytotoxicity against all the three cell lines. In particular, compound 6 with para-tolyl group at 5-position, exhibited most potent inhibitory effect on the viability of MCF7, MDA231 and K562 cells, with IC50 values of 22, 26 and 11 µM, respectively. Notably, all the highly active compounds possess phenyluriedo group at 2-position with a methyl ester group at 4-position, indicating the probable role of these substituents in the target interaction and inducing cytotoxicity. Interestingly, compounds 1-4 and 10-13 with a free amino group at 2-position did not show any cytotoxic effect on K562 cell line, while exhibiting mild to moderate cytotoxicity against the MCF7 and MDA231 cell lines. However, none of the tested compounds showed any activity against normal human dermal fibroblast cells indicating the safety/tolerability of the examined concentrations. Furthermore, these compounds also exhibited satisfactory ADMET properties (in silico), without violating the Lipinski’s rule of five. Conclusion: The most active compounds 6 and 9 predicted to have good oral absorption and low human serum protein binding, exhibiting no reactive functional group and probable CNS activity compared with 95% of the known oral drugs as predicted (in silico) by QikProp. Thus, compounds 6 and 9 can be considered as lead molecules for further modification and discovery of novel anticancer agents with nanomolar potency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.