Brain–computer interfaces (BCIs) have been used to control the gait of a virtual self-avatar with a proposed application in the field of gait rehabilitation. Some limitations of existing systems are: (a) some systems use mental imagery (MI) of movements other than gait; (b) most systems allow the user to take single steps or to walk but do not allow both; (c) most function in a single BCI mode (cue-paced or self-paced). Objective. The objective of this study was to develop a high performance multi-modal BCI to control single steps and forward walking of an immersive virtual reality avatar. Approach. This system used MI of these actions, in cue-paced and self-paced modes. Twenty healthy participants participated in this study, which was comprised of four sessions across four different days. They were cued to imagine a single step forward with their right or left foot, or to imagine walking forward. They were instructed to reach a target by using the MI of multiple steps (self-paced switch-control mode) or by maintaining MI of forward walking (continuous-control mode). The movement of the avatar was controlled by two calibrated regularized linear discriminate analysis classifiers that used the µ power spectral density over the foot area of the motor cortex as a feature. The classifiers were retrained after every session. For a subset of the trials, positive modified feedback (MDF) was presented to half of the participants, where the avatar moved correctly regardless of the classification of the participants’ MI. The performance of the BCI was computed on each day, using different control modes. Main results. All participants were able to operate the BCI. Their average offline performance, after retraining the classifiers was 86.0 ± 6.1%, showing that the recalibration of the classifiers enhanced the offline performance of the BCI (p < 0.01). The average online performance was 85.9 ± 8.4% showing that MDF enhanced BCI performance (p = 0.001). The average performance was 83% at self-paced switch control and 92% at continuous control mode. Significance. This study reports on a first BCI to use motor imagery of the lower limbs in order to control the gait of an avatar with different control modes and different control commands (single steps or forward walking). BCI performance is increased in a novel way by combining three different performance enhancement techniques, resulting in a single high performance and multi-modal BCI system. This study also showed that the improvements due to the effects of MDF lasted for more than one session.
A brain-computer interface (BCI) decodes the brain signals representing a desire to do something and transforms those signals into a control command. However, only a limited number of mental tasks have been previously investigated and classified. This study aimed to investigate two motor imagery (MI) commands, moving forward and moving backward, using a small number of EEG channels, to be used in a neurofeedback context. This study also aimed to simulate a BCI and investigate the offline classification between MI movements in forward and backward directions, using different features and classification methods. Ten healthy people participated in a two-session (48 min each) experiment. This experiment investigated neurofeedback of navigation in a virtual tunnel. Each session consisted of 320 trials where subjects were asked to imagine themselves moving in the tunnel in a forward or backward motion after a randomly presented (forward versus backward) command on the screen. Three electrodes were mounted bilaterally over the motor cortex. Trials were conducted with feedback. Data from session 1 were analyzed offline to train classifiers and to calculate thresholds for both tasks. These thresholds were used to form control signals that were later used online in session 2 in neurofeedback training to trigger the virtual tunnel to move in the direction requested by the user's brain signals. After 96 min of training, the online band-power neurofeedback training achieved an average classification of 76%, while the offline BCI simulation using power spectral density asymmetrical ratio and AR-modeled band power as features, and using LDA and SVM as classifiers, achieved an average classification of 80%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.