Prognostics and Health Management (commonly called PHM) is a field that focuses on the degradation mechanisms of systems in order to estimate their health status, anticipate their failure and optimize their maintenance. PHM uses methods, tools and algorithms for monitoring, anomaly detection, cause diagnosis, prognosis of the remaining useful life (RUL) and maintenance optimization. It allows for permanently monitoring the health of the system and provides operators and managers with relevant information to decide on actions to be taken to maintain the system in optimal operational conditions. This paper aims to present the emergence of the PHM thematically to describe the subjacent processes, particularly prognosis, how it supplies the different maintenance strategies and to explain the benefits that can be anticipated. More specifically, this paper establishes a state of the art in prognostic methods used today in the PHM strategy. In addition, this paper shows the multitude of possible prognostic approaches and the choice of one among them that will help to provide a framework for industrial companies.
This paper presents an innovative approach to the extraction of an indicator for the monitoring of bearing degradation. This approach is based on the principles of the empirical mode decomposition (EMD) and the Hilbert transform (HT). The proposed approach extracts the temporal components of oscillating vibration signals called intrinsic mode functions (IMFs). These components are classified locally from the highest frequencies to the lowest frequencies. By selecting the appropriate components, it is possible to construct a bank of self-adaptive and automatic filters. Combined with the HT, the EMD allows an estimate of the instantaneous frequency of each IMF. A health indicator called the Hilbert marginal spectrum density is then extracted in order to detect and diagnose the degradation of bearings. This approach was validated on two test benches with variable speeds and loads. The obtained results demonstrated the effectiveness of this approach for the monitoring of ball and roller bearings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.