Healthcare information systems can reduce the expenses of treatment, foresee episodes of pestilences, help stay away from preventable illnesses, and improve personal life satisfaction. As of late, considerable volumes of heterogeneous and differing medicinal services data are being produced from different sources covering clinic records of patients, lab results, and wearable devices, making it hard for conventional data processing to handle and manage this amount of data. Confronted with the difficulties and challenges facing the process of managing healthcare big data such as volume, velocity, and variety, healthcare information systems need to use new methods and techniques for managing and processing such data to extract useful information and knowledge. In the recent few years, a large number of organizations and companies have shown enthusiasm for using semantic web technologies with healthcare big data to convert data into knowledge and intelligence. In this paper, we review the state of the art on the semantic web for the healthcare industry. Based on our literature review, we will discuss how different techniques, standards, and points of view created by the semantic web community can participate in addressing the challenges related to healthcare big data.
The hierarchical organisation of distributed systems can provide an efficient decomposition for machine learning. This paper proposes an algorithm for cooperative policy construction for independent learners, named Q-learning with aggregation (QA-learning). The algorithm is based on a distributed hierarchical learning model and utilises three specialisations of agents: workers, tutors and consultants. The consultant agent incorporates the entire system in its problem space, which it decomposes into sub-problems that are assigned to the tutor and worker agents. The QAlearning algorithm aggregates the Q-tables of worker agents into a central repository managed by their tutor agent. Each tutor's Q-table is then incorporated into the consultant's Qtable, resulting in a Q-table for the entire problem. The algorithm was tested using a distributed hunter prey problem, and experimental results show that QA-learning converges to a solution faster than single agent Q-learning and some famous cooperative Q-learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.