Targeted delivery of therapeutics through the use of nanoparticles (NPs) has emerged as a promising method that increases their efficacy and reduces their side effects. NPs can be tailored to localize to selective tissues through conjugation to ligands that bind cell-specific receptors. Although the vast majority of nanodelivery platforms have focused on cancer therapy, efforts have begun to introduce nanotherapeutics to the fields of immunology as well as transplantation. In this review, we provide an overview from a clinician’s perspective of current nanotherapeutic strategies to treat solid organ transplants with NPs during the time interval between organ harvest from the donor and placement into the recipient, an innovative technology that can provide major benefits to transplant patients. The use of ex vivo normothermic machine perfusion (NMP), which is associated with preserving the function of the organ following transplantation, also provides an ideal opportunity for a localized, sustained, and controlled delivery of nanotherapeutics to the organ during this critical time period. Here, we summarize previous endeavors to improve transplantation outcomes by treating the organ with NPs prior to placement in the recipient. Investigations in this burgeoning field of research are promising, but more extensive studies are needed to overcome the physiological challenges to achieving effective nanotherapeutic delivery to transplanted organs discussed in this review.
Oral cancer prevalence is increasing at an alarming rate worldwide, especially in developing countries which lack the medical infrastructure to manage it. For example, the oral cancer burden in India has been identified as a public health crisis. The high expense and logistical barriers to obtaining treatment with surgery, radiotherapy and chemotherapy often result in progression to unmanageable late stage disease with high morbidity. Even when curative, these approaches can be cosmetically and functionally disfiguring with extensive side effects. An alternate effective therapy for oral cancer is a light based spatially-targeted cytotoxic therapy called photodynamic therapy (PDT). Despite excellent healing of the oral mucosa in PDT, a lack of robust enabling technology for intraoral light delivery has limited its broader implementation. Leveraging advances in 3D printing, we have developed an intraoral light delivery system consisting of modular 3D printed light applicators with pre-calibrated dosimetry and mouth props that can be utilized to perform PDT in conscious subjects without the need of extensive infrastructure or manual positioning of an optical fiber. To evaluate the stability of the light applicators, we utilized an endoscope in lieu of the optical fiber to monitor motion in the fiducial markers. Here we showcase the stability (less than 2 mm deviation in both horizontal and vertical axis) and ergonomics of our applicators in delivering light precisely to the target location in ten healthy volunteers. We also demonstrate in five subjects with T1N0M0 oral lesions that our applicators coupled with a low-cost fiber coupled LED-based light source served as a complete platform for intraoral light delivery achieving complete tumor response with no residual disease at initial histopathology follow up in these patients. Overall, our approach potentiates PDT as a viable therapeutic option for early stage oral lesions that can be delivered in low resource settings.
Heart failure (HF) is associated with pathological remodeling of the myocardium, including the initiation of fibrosis and scar formation by activated cardiac fibroblasts (CFs). Although early CF-dependent scar formation helps prevent cardiac rupture by maintaining the heart’s structural integrity, ongoing deposition of the extracellular matrix in the remote and infarct regions can reduce tissue compliance, impair cardiac function, and accelerate progression to HF. In our study, we conducted mass spectrometry (MS) analysis to identify differentially altered proteins and signaling pathways between CFs isolated from 7 day sham and infarcted murine hearts. Surprisingly, CFs from both the remote and infarct regions of injured hearts had a wide number of similarly altered proteins and signaling pathways that were consistent with fibrosis and activation into pathological myofibroblasts. Specifically, proteins enriched in CFs isolated from MI hearts were involved in pathways pertaining to cell–cell and cell–matrix adhesion, chaperone-mediated protein folding, and collagen fibril organization. These results, together with principal component analyses, provided evidence of global CF activation postinjury. Interestingly, however, direct comparisons between CFs from the remote and infarct regions of injured hearts identified 15 differentially expressed proteins between MI remote and MI infarct CFs. Eleven of these proteins (Gpc1, Cthrc1, Vmac, Nexn, Znf185, Sprr1a, Specc1, Emb, Limd2, Pawr, and Mcam) were higher in MI infarct CFs, whereas four proteins (Gstt1, Gstm1, Tceal3, and Inmt) were higher in MI remote CFs. Collectively, our study shows that MI injury induced global changes to the CF proteome, with the magnitude of change reflecting their relative proximity to the site of injury.
The ability of drug-eluting stent (DES) to inhibit intimal proliferation has resulted in a massive increase in their usage over the years. However, it is known that the application of DES can alter the normal cascade of vascular healing, resulting in delayed endothelialisation with risk of vascular complications. Coronary artery aneurysms (CAN) are defined as more than 50% dilatation of the coronary artery compared to the reference vessel diameter with the reported incidence after percutaneous intervention (PCI) being only around 0.35 to 6.0%. Previously, CAN had been reported with the use of bare metal stent secondary to stretch, stent fracture and dissection. However, recently, increasing number of cases have been reported describing CAN after DES implantation. To the best of the authors' knowledge, they present the first case from Pakistan of a left anterior descending coronary artery aneurysm after DES implantation treated successfully with stenting under intravascular ultrasound guidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.