Behavioral activation is a fundamental feature of motivation, and organisms frequently make effort-related decisions based upon evaluations of reinforcement value and response costs. Furthermore, people with major depression and other disorders often show anergia, psychomotor retardation, fatigue, and alterations in effort-related decision making. Tasks measuring effort-based decision making can be used as animal models of the motivational symptoms of depression, and the present studies characterized the effort-related effects of the vesicular monoamine transport (VMAT-2) inhibitor tetrabenazine. Tetrabenazine induces depressive symptoms in humans, and also preferentially depletes dopamine (DA). Rats were assessed using a concurrent progressive ratio (PROG)/chow feeding task, in which they can either lever press on a PROG schedule for preferred high-carbohydrate food, or approach and consume a less-preferred lab chow that is freely available in the chamber. Previous work has shown that the DA antagonist haloperidol reduced PROG work output on this task, but did not reduce chow intake, effects that differed substantially from those of reinforcer devaluation or appetite suppressant drugs. The present work demonstrated that tetrabenazine produced an effort-related shift in responding on the PROG/chow procedure, reducing lever presses, highest ratio achieved and time spent responding, but not reducing chow intake. Similar effects were produced by administration of the subtype selective DA antagonists ecopipam (D1) and eticlopride (D2), but not by the cannabinoid CB1 receptor neutral antagonist and putative appetite suppressant AM 4413, which suppressed both lever pressing and chow intake. The adenosine A2A antagonist MSX-3, the antidepressant and catecholamine uptake inhibitor bupropion, and the MAO-B inhibitor deprenyl, all reversed the impairments induced by tetrabenazine. This work demonstrates the potential utility of the PROG/chow procedure as a rodent model of the effort-related deficits observed in depressed patients.
Digital predistortion (DPD) of a phased array requires that multiple transmit paths must be measured by a feedback (FB) receiver (Rx). In this paper, we propose a FB concept for DPD in a time-division-duplex (TDD) phased arrays. We use a single FB line to collect the waveform samples from the parallel transmit paths to the FB Rx. The TDD switches are used to enable and disable individual transmit paths. The feedback is calibrated by comparing the FB outputs from individual PAs to over-the-air (OTA) measurement reference performed with a frequency modulated continuous wave (FMCW) signal. The individual PA measurements are post-equalized before the DPD training to model the far-field signal. Three alternative strategies are considered for training the DPD through the calibrated FB line and compared with the OTA DPD. The performance is verified by OTA measurements of a 28 GHz phased array transmitter and with fifth generation New Radio waveform in terms of total radiated (TR) adjacent channel power ratio (ACPR), cumulative absolute ACP (CACP), and main lobe error vector magnitude (EVM). The best EVM and ACPR performance is achieved by the strategy where the individual PA responses are treated independently. The methods were comparable to the OTA DPD performance, achieving all < 37 dB TRACPR, −29 dBm/MHz CACP, and ≤ 7 % EVM.
Digital predistortion (DPD) of a phased array requires that multiple transmit paths must be measured by a feedback (FB) receiver (Rx). This paper proposes a simplified FB architecture to be used for phased array DPD. A single FB line collects the waveform samples from the parallel paths to the FB Rx. The gain and phase of the common FB line is obtained by comparing the FB outputs to over-the-air (OTA) measurements. The overall DPD training is done by collecting the PA outputs with the common FB line, post-equalizing them to model the main lobe waveform and combining them to create the object used for array DPD. The DPD performance was verified by OTA measurements with 5GNR waveform and 28 GHz 8-path phased array transmitter. The DPD trained through the local FB line with the proposed calibration method achieved <-45dB ACPR which was close to OTA DPD performance.
We study the impact of amplitude and phase differences between the parallel power amplifier (PA) branches in a phased array and their impact on the performance of the digital predistortion (DPD). The DPD coefficients are estimated from the array response in the far-field. The DPD coefficients need to be updated for changes in the nonlinear behavior of the PAs due to amplitude and phase variations. We present a training mechanism which makes the DPD robust to branch specific amplitude and phase weights and can tolerate these variations without the need of adapting to individual changes in the nonlinear behavior of the PA branches. The DPD is trained for a set of random amplitude and phase weights following normal distribution and the resultant mean DPD coefficients are used for predistortion. The simulation results show that the mean DPD can achieve the same average linearity performance as the continuously trained reference DPD for 32 elements uniform array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.