An asymmetric 11-step synthesis of the polyoxygenated cyclohexene natural product kweichowenol A from the traditional Chinese medicinal herb Uvaria kweichowesis is reported. The oxygenation pattern was installed on a linear precursor by exploiting the acyclic stereocontrol of the Kiyooka aldol reaction, as well as Cram chelate-controlled Grignard reactions. Ring-closing metathesis and a selective benzoylation then gave the natural product.
Chiral secondary mixed alkylcopper-zinc reagents were prepared from the corresponding alkyl iodides and reacted with allylic epoxides via an anti-SN2′-substitution and retention of configuration of the chiral alkylorganometallic, leading to chiral allylic alcohols. This method was used in a total synthesis of the natural product (3S,6R,7S)-zingiberenol in 8 steps and 9.7% overall yield [dr (3S,6R) = 99:1; dr (6R,7S) = 81:19] starting from commercially available 3-methyl-2-cyclohexenone.
Dihydrobenzofurans and indolines are important constituents of pharmaceuticals. Herein, we describe a novel strategy for their construction in which the aromatic ring is created de novo through an inverse-electron demand Diels−Alder reaction and cheletropic extrusion sequence of a 2-halothiophene-1,1dioxide with an enol ether/enamide, followed by aromatization. Unusually, the aromatization process proved to be highly challenging, but it was discovered that treatment of the halocyclohexadienes with a base effected an α-elimination− aromatization reaction. Mechanistic investigation of this step using deuterium-labeling studies indicated the intermediacy of a carbene which undergoes a 1,2-hydrogen shift and subsequent aromatization. The methodology was applied to a modular and stereoselective total synthesis of the antiplatelet drug beraprost in only 8 steps from a key enal-lactone. This lactone provided the core of beraprost to which both its sidechains could be appended through a 1,4-conjugate addition process (lower ω-sidechain), followed by de novo construction of beraprost's dihydrobenzofuran (upper α-sidechain) using our newly developed methodology. Additionally, we have demonstrated the breadth of our newly established protocol in the synthesis of functionalized indolines, which occurred with high levels of regiocontrol. According to density-functional theory (DFT) calculations, the high selectivity originates from attractive London dispersion interactions in the TS of the Diels−Alder reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.