Antimicrobial peptides (AMPs) are gaining importance as anti-infective agents. Here we describe the updated Collection of Antimicrobial Peptide (CAMP) database, available online at http://www.camp.bicnirrh.res.in/. The 3D structures of peptides are known to influence antimicrobial activity. Although there exists databases of AMPs, information on structures of AMPs is limited in these databases. CAMP is manually curated and currently holds 6756 sequences and 682 3D structures of AMPs. Sequence and structure analysis tools have been incorporated to enhance the usefulness of the database.
SummaryMODE-TASK, a novel and versatile software suite, comprises Principal Component Analysis, Multidimensional Scaling, and t-Distributed Stochastic Neighbor Embedding techniques using Molecular Dynamics trajectories. MODE-TASK also includes a Normal Mode Analysis tool based on Anisotropic Network Model so as to provide a variety of ways to analyse and compare large-scale motions of protein complexes for which long MD simulations are prohibitive. Beside the command line function, a GUI has been developed as a PyMOL plugin.Availability and implementationMODE-TASK is open source, and available for download from https://github.com/RUBi-ZA/MODE-TASK. It is implemented in Python and C++. It is compatible with Python 2.x and Python 3.x and can be installed by Conda.Supplementary information Supplementary data are available at Bioinformatics online.
Human carbonic anhydrase II (CA-II) is a Zinc (Zn2+) metalloenzyme responsible for maintenance of acid-base balance within the body through the reversible hydration of CO2 to produce protons (H+) and bicarbonate (BCT). Due to its importance, alterations to the amino acid sequence of the protein as a result of single nucleotide variations (nsSNVs) have detrimental effects on homeostasis. Six pathogenic CA-II nsSNVs, K18E, K18Q, H107Y, P236H, P236R and N252D were identified, and variant protein models calculated using homology modeling. The effect of each nsSNV was analyzed using motif analysis, molecular dynamics (MD) simulations, principal component (PCA) and dynamic residue network (DRN) analysis. Motif analysis identified 11 functionally important motifs in CA-II. RMSD data indicated subtle SNV effects, while PCA analysis revealed that the presence of BCT results in greater conformational sampling and free energy in proteins. DRN analysis showed variant allosteric effects, and the average betweenness centrality (BC) calculations identified Glu117 as the most important residue for communication in CA-II. The presence of BCT was associated with a reduction to Glu117 usage in all variants, suggesting implications for Zn2+ dissociation from the CA-II active site. In addition, reductions to Glu117 usage are associated with increases in the usage of the primary and secondary Zn2+ ligands; His94, His96, His119 and Asn243 highlighting potential compensatory mechanisms to maintain Zn2+ within the active site. Compared to traditional MD simulation investigation, DRN analysis provided greater insights into SNV mechanism of action, indicating its importance for the study of missense mutation effects in proteins and, in broader terms, precision medicine related research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.