BackgroundDue to climate change, the geographical distribution of sand flies during the last decades has shifted northward from latitudes below 45°N in southern Europe to latitudes just above 50○N. Recent studies show that some phlebotomine sand flies were recorded in several parts of Germany and Belgium. In central Europe, some autochthone leishmaniasis cases are being recorded in regions traditionally regarded as leishmaniasis-free. An important challenge is to predict the geographical distribution of leishmaniasis vectors under new climatic conditions. In this study, we attempted to predict the current distribution of six leishmaniasis vectors in the Mediterranean basin and forecast species’ geographical shift under future climate scenarios using an ensemble ecological niche modeling approach. Species records were obtained from scientific surveys published in the research literature between 2006 and 2016. A series of climate metrics describing temperature and precipitation in the study area under two climatic scenarios were obtained from WorldClim database. A consensus model was derived from six varieties of modeling approaches (regression, machine learning and classification techniques) in order to ensure valid prediction of distribution of vectors under different climate scenarios.ResultsModel performance was generally high for the included species with a specificity (true negative rate) ranging from 81.03 to 96.52% (mean = 86.94%) and a sensitivity (true positive rate) ranging from 87.93 to 100% (mean = 96.98%). Our work evidenced the hypothesis of the widespread of Leishmania vectors under climate change scenarios. All of the studied species are prospected to gain new areas that are actually not suitable for vectors’ survival. Phlebotomine sand flies are prospected to invade extra-Mediterranean regions, especially western and central Europe.ConclusionsOur study confirmed the importance of environmental and climate factors on the distribution of leishmaniasis vectors and demonstrated the performance of ecological niche modeling in the prediction of the geographical spread of vector-borne diseases. Ecological niche modeling should be considered in the future as a valuable tool in addition to experimental laboratory studies for a better understanding of the biology of vector species.
Cutaneous leishmaniasis is a very complex disease involving multiple factors that limit its emergence and spatial distribution. Prediction of cutaneous leishmaniasis epidemics in Tunisia remains difficult because most of the epidemiological tools used so far are descriptive in nature and mainly focus on a time dimension. The purpose of this work is to predict the potential geographic distribution of Phlebotomus papatasi and zoonotic cutaneous leishmaniasis caused by Leishmania major in Tunisia using Grinnellian ecological niche modeling. We attempted to assess the importance of environmental factors influencing the potential distribution of P. papatasi and cutaneous leishmaniasis caused by L. major. Vectors were trapped in central Tunisia during the transmission season using CDC light traps (John W. Hock Co., Gainesville, FL). A global positioning system was used to record the geographical coordinates of vector occurrence points and households tested positive for cutaneous leishmaniasis caused by L. major. Nine environmental layers were used as predictor variables to model the P. papatasi geographical distribution and five variables were used to model the L. major potential distribution. Ecological niche modeling was used to relate known species' occurrence points to values of environmental factors for these same points to predict the presence of the species in unsampled regions based on the value of the predictor variables. Rainfall and temperature contributed the most as predictors for sand flies and human case distributions. Ecological niche modeling anticipated the current distribution of P. papatasi with the highest suitability for species occurrence in the central and southeastern part of Tunisian. Furthermore, our study demonstrated that governorates of Gafsa, Sidi Bouzid, and Kairouan are at highest epidemic risk.
Species identification in Quebec, Canada, is usually performed with photo-interpretation at the stand level, and often results in a lack of precision which affects forest management. Very high spatial resolution imagery, such as WorldView-3 and Light Detection and Ranging have the potential to overcome this issue. The main objective of this study is to map 11 tree species at the tree level using an object-based approach. For modeling, 240 variables were derived from WorldView-3 with pixel-based and arithmetic feature calculation techniques. A global approach (11 species) was compared to a hierarchical approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were compared: support vector machine, classification and regression tree, random forest (RF), k-nearest neighbors, and linear discriminant analysis. Each model was assessed using 16-band or first 8-band derived variables, with the results indicating higher precision for the RF technique. Higher accuracies were found using 16-band instead of 8-band derived variables for the global approach (overall accuracy (OA): 75% vs. 71%, Kappa index of agreement (KIA): 0.72 vs. 0.67) and tree type level (OA: 99% vs. 97%, KIA: 0.97 vs. 0.95). For broadleaf individual species, higher accuracy was found using first 8-band derived variables (OA: 70% vs. 68%, KIA: 0.63 vs. 0.60). No distinction was found for individual conifer species (OA: 94%, KIA: 0.93). This paper demonstrates that a hierarchical classification approach gives better results for conifer species and that using an 8-band WorldView-3 instead of a 16-band is sufficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.