Aim: The pattern of increasing biological diversity from high latitudes to the equator [latitudinal diversity gradient (LDG)] has been recognized for > 200 years. Empirical studies have documented this pattern across many different organisms and locations. Our goal was to quantify the evidence for the global LDG and the associated spatial, taxonomic and environmental factors. We performed a meta-analysis on a large number of individual LDGs that have been published in the 14 years since Hillebrand's ground-breaking meta-analysis of the LDG, using meta-analysis and metaregression approaches largely new to the fields of ecology and biogeography.Location: Global. Major taxa studied: Bacteria, protists, plants, fungi and animals. Methods:We synthesized the outcomes of 389 individual cases of LDGs from 199 papers published since 2003, using hierarchical mixed-effects meta-analysis and multiple meta-regression.Additionally, we re-analysed Hillebrand's original dataset using modern methods. Results:We confirmed the generality of the LDG, but found the pattern to be weaker than was found in Hillebrand's study. We identified previously unreported variation in LDG strength and slope across longitude, with evidence that the LDG is strongest in the Western Hemisphere. Locational characteristics, such as habitat and latitude range, contributed significantly to LDG strength, whereas organismal characteristics, including taxonomic group and trophic level, did not. Modern meta-analytical models that incorporate hierarchical structure led to more conservative and sometimes contrasting effect size estimates relative to Hillebrand's initial analysis, whereas metaregression revealed underlying patterns in Hillebrand's dataset that were not apparent with a traditional analysis. Main conclusions:We present evidence of global latitudinal, longitudinal and habitat-based patterns in the LDG, which are apparent across both marine and terrestrial realms and over a broad taxonomic range of organisms, from bacteria to plants and vertebrates. We used the search phrase, "latitud* NEAR/20 (diversity OR biodiversity OR "species richness")" for Web of Science and altered it according to the search methods required for the other databases (see Supporting Information Appendix S1). We included studies written in English in relevant disciplines (e.g., ecology, evolution), excluding non-relevant fields.The literature search yielded 3,817 studies, of which we screened the abstracts. We excluded studies in which: (a) species richness was measured over < 108 of latitude, (b) species richness was measured in fewer
SummaryWe report the size and density of an Egyptian Vulture population in Turkey and provide insight into its nest site selection patterns. The study was carried out at Beypazarı (Turkey), holding one of the densest Egyptian Vulture populations (six pairs per 100 km2) in the Western Palearctic. Random Forests analysis revealed that human impact was a potential factor governing the distribution of nest sites, as the pairs clearly preferred to breed away from nearby villages, towns or roads. Utilisation of elevation gradient and aspect was similar to other studied populations, with the probability of nesting increasing at lower altitudes and for south-facing cliffs. Nearest-neighbour distance between nests was about 1.5 km, indicating territorial behaviour when choosing nest sites at the local scale. Our findings provide guidance for nature conservation NGOs and related government bodies for their various actions including designation of Important Bird Areas, regulation of mining practices and preparation of environmental impact assessments.
SummaryChanges in food availability that lead to lower reproductive output or lower survival probability are important drivers of the widespread declines in vulture populations. Permanent feeding stations for scavengers, such as vulture restaurants or rubbish dumps, may have both positive and negative effects on reproductive parameters. Here we examine the effects of the closure of a large communal rubbish dump on breeding success and fledging rate of a dense population of the ’Endangered’ Egyptian Vulture Neophron percnopterus in central Turkey to assess whether the closure may have affected the population. We monitored territories from 2011 to 2016, and tested whether the closure of the rubbish dump in early 2015 coincided with changes in reproductive parameters while accounting for confounding variables such as weather and the availability of other predictable foraging opportunities. We found an average productivity of 0.78 fledglings per territorial pair before the dump closed and 0.82 after the closure, an average breeding success of 0.64 before and 0.71 after the closure, and an average fledging rate of 1.17 fledglings per successful pair before and 1.26 after the closure of the rubbish dump. Once confounding variables were accounted for, the closure of the rubbish dump did not have a significant effect on reproductive parameters (P = 0.426 for nest survival and P = 0.786 for fledging rate). We speculate that the Egyptian Vulture population in central Turkey may have sufficient alternative food sources and high levels of intra-specific competition due to its density, so that the closure of the rubbish dump may not have resulted in detectable positive or negative effects. We recommend the maintenance of small traditional animal husbandry farms and disposal practices that mimic the spatio-temporally unpredictable supply of food sources that appears to be most beneficial for avian scavengers.
Menegotto and colleagues’ (2019) commentary on our paper (Kinlock et al., 2018) does not negate our findings, but by recategorizing and reanalysing a portion of our data set, advances our knowledge of the latitudinal diversity gradients (LDGs) in marine ecosystems, particularly emphasizing different findings for benthic LDGs as a result of the recategorization of the data. Furthermore, we see the contribution by Menegotto et al. (2019) as highlighting the importance of scientific transparency; we believe that this insight into the nature of LDGs in marine systems would have been delayed, if not unobtainable, had we not provided fully transparent methods and complete data in our paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.