Acid mine drainage (AMD) is one of the main causes of environmental threats resulting from mining activities, yet efficient characterization and prediction of AMD potential of wastes play an important role in preventing AMD. In this study, the chemical and mineralogical properties of fresh waste samples, collected from waste ponds of the Görgü (Malatya) zinc-lead ore processing plant, were determined and the results were used to explain its AMD potential. Alteration properties of the wastes in water was investigated by monitoring certain properties of the prepared suspension with respect time. Additionally, pyrite concentrate particles were added into the suspensions at certain proportions to evaluate its effect on the AMD generation and alteration. Analysis and test results showed that the raw waste was rich in carbonate and poor in pyritic sulfur, and hence did not have the AMD generation potential. The pH, electrical conductivity, and metal ions concentrations of the suspension medium were determined at regular intervals, and obtained data were found very beneficial to explain the time-dependent behavior of waste in water. After the depletion of liquid in the suspension, the remained solid residuals were chemically and mineralogically analyzed to compare with raw waste. It was concluded that sufficient aeration and stirring of suspension is required for noticeable alteration of the waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.