There is little information on how neuropeptide Y (NPY) proteolysis by peptidases occurs in serum, in part because reliable techniques are lacking to distinguish different NPY immunoreactive forms and also because the factors affecting the expression of these enzymes have been poorly studied. In the present study, LC-MS/MS was used to identify and quantify NPY fragments resulting from peptidolytic cleavage of NPY Neuropeptide Y (NPY)2 is a 36-amino acid peptide involved in the central and peripheral control of blood pressure (1-4) and in feeding behavior and obesity (5-9). NPY stimulates at least 6 types of receptors, called Y1, Y2, Y3, Y4, Y5, and y6 (10 -12). The Y1 receptor has high affinity for full-length NPY, while Y2 and Y5 receptors bind and are stimulated by fulllength and N-terminally truncated NPY. The physiological effects associated to the Y1 and Y2 receptors are the best known; exposure to a Y1 agonist causes an increase in blood pressure and potentiates postsynaptically the action of other vasoactive substances (1, 4, 13), whereas Y2 receptors are mainly located presynaptically, and upon stimulation mediate the inhibition of neurotransmitter release (14,15). NPY is a prototype of peptide whose function can be altered by proteases. Among peptidases displaying a high affinity for NPY, the primary role appears to be played by dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5), a serine-type protease, also known as CD26, that releases an N-terminal dipeptide, Xaa-Xab--Xac, preferentially when Xab is a proline or an alanine residue (16). By cleaving the Tyr-Pro dipeptide off the NPY N-terminal extremity, DPPIV generates NPY 3-36 , a truncated form that loses its affinity for the Y1 receptor and becomes a Y2/Y5 receptor agonist (17, 18).NPY can also be degraded by aminopeptidase P (AmP, EC 3.4.11.9), a metalloprotease that hydrolyzes the peptide bond between the first and the second amino acid residue at the N terminus of proteins, if the second amino acid is a proline (19). AmP removes the N-terminal tyrosine from NPY to generate NPY 2-36 , a selective Y2 agonist (18,20). There is little information on how NPY cleavage by these enzymes occurs in serum, in part because reliable techniques are lacking to distinguish different NPY immunoreactive (NPYir) forms and also because the factors affecting the expression of these enzymes have been poorly studied. Recently, Frerker et al. (21) reported by MALDI-TOF mass spectrometry that NPY 1-36 is exclusively degraded by DPPIV into NPY 3-36 in EDTA-plasma but they did not provide kinetics of NPY cleavage efficiency of DPPIV. BeckSickinger and co-workers (22) studied with the same technique the metabolic stability of fluorescent N-terminally labeled NPY analogues incubated in human plasma and found that the 36th, 35th, and 33rd residues of NPY analogues may also be removed by unknown carboxypeptidases.We have set up a method using liquid chromatography coupled with tandem mass spectrometry (LC-MS n ) to selectively quantify NPY and its C-terminal fragments NPY 2-36 an...
Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM-K115, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Eight Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-K115. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a peptide impurity corrected amino acid analysis (PICAA) approach as the amount of material that has been provided to each participant (25 mg) is insufficient to perform a full mass balance based characterization of the material by a participating laboratory. The coordinators, both the BIPM and the NIM, were the laboratories to use the mass balance approach as they had more material available. It was decided to propose KCRVs for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. More detailed studies on the identification/quantification of peptide related impurities and the hydrolysis efficiency revealed that the integrity of the impurity profile of the related peptide impurities obtained by the participant is crucial for the impact on accuracy of the hCP mass fraction assignment. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and elaborate set of results is taken for the calculation of the KCRVPepImp. The KCRVPepImp for the peptide related impurity mass fractions of the material was 83.3 mg/g with a combined standard uncertainty of 1.5 mg/g. Inspection of the degree of equivalence plots for the mass fraction of peptide impurities and additional information obtained from the peptide related impurity profile indicates that in many cases only a very small number of impurities have been identified and quantified resulting in an underestimation of the peptide related impurity mass fractions. The approach to obtain a KCRVhCP for the mass fraction of hCP is based on a mass balance calculation that takes into account the most exhaustive and elaborate set of results for the peptide related impurities KCRVPepImp, the TFA mass fraction value, water and other minor counter ions obtained by the coordinating laboratories. Differences in the quality of the results obtained for both peptides related impurity mass fractions and hCP mass fractions are better weighted and reflected in smaller uncertainties. The KCRVhCP for CCQM-K115 is 801.8 mg/g with a corresponding combined standard uncertainty of 3.1 mg/g. In general, mass balance approaches show smaller uncertainties than PICAA approaches and the majority of results obtained by the PICAA approach are in agreement because of larger corresponding uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
In addition to the importance of sample preparation and extract separation, MS detection is a key factor in the sensitive quantification of large undigested peptides. In this article, a linear ion trap MS (LIT-MS) and a triple quadrupole MS (TQ-MS) have been compared in the detection of large peptides at subnanomolar concentrations. Natural brain natriuretic peptide, C-peptide, substance P and D-Junk-inhibitor peptide, a full D-amino acid therapeutic peptide, were chosen. They were detected by ESI and simultaneous MS(1) and MS(2) acquisitions. With direct peptide infusion, MS(2) spectra revealed that fragmentation was peptide dependent, milder on the LIT-MS and required high collision energies on the TQ-MS to obtain high-intensity product ions. Peptide adsorption on surfaces was overcome and peptide dilutions ranging from 0.1 to 25 nM were injected onto an ultra high-pressure LC system with a 1 mm id analytical column and coupled with the MS instruments. No difference was observed between the two instruments when recording in LC-MS(1) acquisitions. However, in LC-MS(2) acquisitions, a better sensitivity in the detection of large peptides was observed with the LIT-MS. Indeed, with the three longer peptides, the typical fragmentation in the TQ-MS resulted in a dramatic loss of sensitivity (> or = 10x).
A generic method for the quantification of type II collagen in protein-based dietary supplements is described. This quantitative analysis was conducted using liquid chromatography-electrospray ionization-time-of-flight mass spectrometry (LC-ESI-TOF MS). Compared to classical methods with the use of isotope-labeled standards, our method includes, for the first time, the quantification of hydroxyproline using histidine as an internal standard. Separation of the analytes was performed on a Phenomenex Synergi 4 μm Fusion-RP 80 Ǻ column (150 × 2.0 mm, 4.0 μm) with a mobile phase made of 10 mM ammonium formate in water (A) and 10 mM ammonium formate in methanol (B). The assay was fully validated according to FDA guidelines, and the method exhibited sufficient specificity, accuracy, and precision. Intra- and inter-batch accuracy, determined as a deviation between nominal and measured values, ranged from -4.8 to 9.1% and from 0.9 to 6.4 %, respectively. All analytes (hydroxyproline and histidine) at three concentration levels showed extraction recoveries from 89 to 98 %. The method was successfully applied to protein-based dietary supplements of the pharmaceutical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.