We consider a method for developing a radio-wave propagation prediction model in a mountainous forested area. A new path loss development approach uses a free-space path loss (FSPL) model and an empirical path loss model. To improve the prediction accuracy, the transmission path distance, free space area, and forest area were calculated separately. We obtained the transmission path distance for free space and forest areas from the digital surface model (DSM), which represents surface elevation information, including vegetation and object height. In this study, the results showed that by combining the empirical model with FSPL for free space area, the accuracy for all the empirical models was improved. We confirmed that the transmission distance calculation of the free space area and forest area with a combination of the empirical models showed a better performance than the model with physical distance. The predicted model results were validated using the actual radio wave propagation in the 920 MHz band measurement data. The overall path loss prediction accuracy was improved for the empirical models average of 8.05 dB on the experimental data.
Long-range (LoRa) wireless communication technology has been widely used in many Internet-of-Things (IoT) applications in industry and academia. Radio wave propagation characteristics in forested areas are important to ensure communication quality in forest IoT applications. In this study, 920 MHz band propagation characteristics in forested areas and tree canopy openness were investigated in the Takakuma experimental forest in Kagoshima, Japan. The aim was to evaluate the performance of the LoRa 920 MHz band with spreading factor (SF12) in a forested hilly area. The received signal strength indicator (RSSI) was measured as a function of the distance between the transmitter antenna and ground station (GS). To illustrate the effect of canopy openness on radio wave propagation, sky view factor (SVF) and a forest canopy height model were considered at each location of a successfully received RSSI. A positive correlation was found between the RSSI and SVF. It was found that between the GS and transmitter antenna, if the canopy height is above 23 m, the signal diffracted and RSSI fell to −120 to −127 dBm, so the presence of the obstacle height should be considered. Further research is needed to clarify the detailed tree density between the transmitter and ground station to propose an optimal propagation model for a forested environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.