Reliable synthesis of the various rapidly expanding bodies of evidence is vital for the process of evidence-informed decision-making in environmental policy, practice and research. With the rise of evidence-base medicine and increasing numbers of published systematic reviews, criteria for assessing the quality of reporting have been developed. First QUOROM (Lancet 354:1896-1900, 1999) and then PRISMA (Ann Intern Med 151:264, 2009) were developed as reporting guidelines and standards to ensure medical meta-analyses and systematic reviews are reported to a high level of detail. PRISMA is now widely used by a range of journals as a pre-submission checklist. However, due to its development for systematic reviews in healthcare, PRISMA has limited applicability for reviews in conservation and environmental management. We highlight 12 key problems with the application of PRISMA to this field, including an overemphasis on meta-analysis and no consideration for other synthesis methods. We introduce ROSES (RepOrting standards for Systematic Evidence Syntheses), a pro forma and flow diagram designed specifically for systematic reviews and systematic maps in the field of conservation and environmental management. We describe how ROSES solves the problems with PRISMA. We outline the key benefits of our approach to designing ROSES, in particular the level of detail and inclusion of rich guidance statements. We also introduce the extraction of meta-data that describe key aspects of the conduct of the review. Collated together, this summary record can help to facilitate rapid review and appraisal of the conduct of a systematic review or map, potentially speeding up the peer-review process. We present the results of initial road testing of ROSES with systematic review experts, and propose a plan for future development of ROSES.
Review articles can provide valuable summaries of the ever-increasing volume of primary research in conservation biology. Where findings may influence important resource-allocation decisions in policy or practice, there is a need for a high degree of reliability when reviewing evidence. However, traditional literature reviews are susceptible to a number of biases during the identification, selection, and synthesis of included studies (e.g., publication bias, selection bias, and vote counting). Systematic reviews, pioneered in medicine and translated into conservation in 2006, address these issues through a strict methodology that aims to maximize transparency, objectivity, and repeatability. Systematic reviews will always be the gold standard for reliable synthesis of evidence. However, traditional literature reviews remain popular and will continue to be valuable where systematic reviews are not feasible. Where traditional reviews are used, lessons can be taken from systematic reviews and applied to traditional reviews in order to increase their reliability. Certain key aspects of systematic review methods that can be used in a context-specific manner in traditional reviews include focusing on mitigating bias; increasing transparency, consistency, and objectivity, and critically appraising the evidence and avoiding vote counting. In situations where conducting a full systematic review is not feasible, the proposed approach to reviewing evidence in a more systematic way can substantially improve the reliability of review findings, providing a time- and resource-efficient means of maximizing the value of traditional reviews. These methods are aimed particularly at those conducting literature reviews where systematic review is not feasible, for example, for graduate students, single reviewers, or small organizations.
Background. Around two-thirds of global GHG emissions are directly and indirectly linked to household consumption, with a global average of about 6 tCO2eq/cap. The average per capita carbon footprint of North America and Europe amount to 13.4 and 7.5 tCO2eq/cap, respectively, while that of Africa and the Middle East—to 1.7 tCO2eq/cap on average. Changes in consumption patterns to low-carbon alternatives therefore present a great and urgently required potential for emission reductions. In this paper, we synthesize emission mitigation potentials across the consumption domains of food, housing, transport and other consumption. Methods. We systematically screened 6990 records in the Web of Science Core Collections and Scopus. Searches were restricted to (1) reviews of lifecycle assessment studies and (2) multiregional input-output studies of household consumption, published after 2011 in English. We selected against pre-determined eligibility criteria and quantitatively synthesized findings from 53 studies in a meta-review. We identified 771 original options, which we summarized and presented in 61 consumption options with a positive mitigation potential. We used a fixed-effects model to explore the role of contextual factors (geographical, technical and socio-demographic factors) for the outcome variable (mitigation potential per capita) within consumption options. Results and discussion. We establish consumption options with a high mitigation potential measured in tons of CO2eq/capita/yr. For transport, the options with the highest mitigation potential include living car-free, shifting to a battery electric vehicle, and reducing flying by a long return flight with a median reduction potential of more than 1.7 tCO2eq/cap. In the context of food, the highest carbon savings come from dietary changes, particularly an adoption of vegan diet with an average and median mitigation potential of 0.9 and 0.8 tCO2eq/cap, respectively. Shifting to renewable electricity and refurbishment and renovation are the options with the highest mitigation potential in the housing domain, with medians at 1.6 and 0.9 tCO2eq/cap, respectively. We find that the top ten consumption options together yield an average mitigation potential of 9.2 tCO2eq/cap, indicating substantial contributions towards achieving the 1.5 °C–2 °C target, particularly in high-income context.
Article impact statement: Systematic reviews can easily fall foul of eight key pitfalls commonly found in poor reviews. However, these pitfalls can be readily avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.