A brief overview of mechanistic studies on the reactions of different Pt(II) complexes with nitrogen- and sulfur-donor biomolecules is presented. The first part describes the results obtained for substitution reactions of mono-functional Pt(II) complexes with different biomolecules, under various experimental conditions (temperature, pH and ionic strength). In addition, an overview of the results obtained for the substitution reactions of bi-functional Pt(II) complexes, analogous to cisplatin, with biomolecules is given. The last part of this report deals with different polynuclear Pt(II) complexes and their substitution behaviour with different biomolecules. The purpose of this perspective is to improve the understanding of the mechanism of action of Pt(II) complexes as potential anti-tumour drugs in the human body.
The kinetics of the substitution reactions between the mono-functional Au(III) complexes, [Au(dien)Cl](2+) and [Au(terpy)Cl](2+) (dien = 3-azapentane-1,5-diamine, terpy = 2,2';6',2''-terpyridine) and bi-functional Au(III) complexes, [Au(bipy)Cl(2)](+) and [Au(dach)Cl(2)](+) (bipy = 2.2'-bipyridine, dach = (1R,2R)-1,2-diaminocyclohexane) and biologically relevant ligands such as l-histidine (l-His), inosine (Ino), inosine-5'-monophosphate (5'-IMP) and guanosine-5'-monophosphate (5'-GMP), were studied in detail. All kinetic studies were performed in 25 mM Hepes buffer (pH = 7.2) in the presence of NaCl to prevent the spontaneous hydrolysis of the chloride complexes. The reactions were followed under pseudo-first order conditions as a function of ligand concentration and temperature using stopped-flow UV-vis spectrophotometry. The results showed that the mono-functional complexes react faster than the bi-functional complexes in all studied reactions. The [Au(terpy)Cl](2+) complex is more reactive than the [Au(dien)Cl](2+) complex, which was confirmed by quantum chemical (DFT) calculations. A more than 50% lower activation energy for the terpy than for the dien based complex was found. The bi-functional [Au(bipy)Cl(2)](+) complex is more reactive than the [Au(dach)Cl(2)](+) complex. The reactivity of the studied nucleophiles follows the same order for all studied systems, viz. l-His > 5'-GMP > 5'-IMP > Ino. According to the measured activation parameters, all studied reactions follow an associative substitution mechanism. Quantum chemical calculations (B3LYP/LANL2DZp) suggest that ligand substitution in [Au(terpy)Cl](2+) and [Au(dien)Cl](2+) by imidazole follows an interchange mechanism with a significant degree of associative character. The results demonstrate the strong connection between the reactivity of the complexes toward biologically relevant ligands and their structural and electronic characteristics. Therefore, the binding of gold(III) complexes to 5'-GMP, constituent of DNA, is of particular interest since this interaction is thought to be responsible for their anti-tumour activity.
Substitution reactions of the complexes [Pd(bpma)(H2O)]2+ and [Pt(bpma)(H2O)]2+, where bpma = bis(2-pyridylmethyl)amine, with TU, DMTU and TMTU for both complexes and Cl-, Br-, I- and SCN- for the platinum complex, were studied in aqueous 0.10 M NaClO4 at pH 2.5 using a variable-temperature stopped-flow spectrophotometer. The pKa value for the coordinated water molecule in [Pd(bpma)(H2O)]2+ (6.67) is a unit higher than that of [Pt(bpma)(H2O)]2+. The observed pseudo-first-order rate constants k(obs) (s(-1)) obeyed the equation k(obs) = k2[Nu] (Nu = nucleophile). The second-order rate constants indicate that the Pd(II) complex is a factor of 10(3) more reactive than Pt(II) complex. The nucleophile reactivity attributed to the steric hindrance in case of TMTU and the inductive effect for DMTU was found to be DMTU > TU > TMTU for [Pt(bpma)(H2O)]2+ and DMTU approximately TU > TMTU for [Pd(bpma)(H2O)]2+. The trend for ionic nucleophile was I- > SCN- > Br- > Cl-, an order linked to their polarizability and the softness or hardness of the metal. Activation parameters were determined for all reactions and the negative entropies of activation (Delta S++) support an associative ligand substitution mechanism. The X-ray crystal structure of [Pd(bpma)(py)](ClO4)2 was determined; it belongs to the triclinic space group P1 and has one formula unit in the unit cell. The unit cell dimensions are a = 8.522(2), b = 8.627(2), c = 16.730(4) A; alpha = 89.20(2), beta = 81.03(2), gamma = 60.61(2) degrees ; V = 1055.7(5) A3. The structure was solved using direct methods in WinGX's implementation of SHELXS-97 and refined to R = 0.054. The coordination geometry of [Pd(bpma)(py)]2+ is distorted square-planar. The Pd-N(central) bond distance, 1.996(3) A, is shorter than the other two Pd-N distances, 2.017(3) and 2.019(3) A. The Pd-N(pyridine) distance is 2.037(3) A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.