Bats of western North America face many threats, but little is known about current population changes in these mammals. We compiled 283 surveys from 49 hibernacula over 32 years to investigate population changes of Townsend’s big-eared bats (Corynorhinus townsendii townsendii) and western small-footed myotis (Myotis ciliolabrum) in Idaho, USA. This area comprises some of the best bat habitat in the western USA, but is threatened by land-use change. Bats in this area also face invasion by the pathogen causing white-nose syndrome. Little is known about long-term trends of abundance of these two species. In our study, estimated population changes for Townsend’s big-eared bats varied by management area, with relative abundance increasing by 186% and 326% in two management areas, but decreasing 55% in another. For western small-footed myotis, analysis of estimated population trend was complicated by an increase in detection of 141% over winter. After accounting for differences in detection, this species declined region-wide by 63% to winter of 1998–1999. The population fully recovered by 2013–2014, likely because 12 of 23 of its hibernacula were closed to public access from 1994 to 1998. Our data clarify long-term population patterns of two bat species of conservation concern, and provide important baseline understanding of western small-footed myotis prior to the arrival of white-nose syndrome in this area.
Understanding frequency and variation of cave-exiting activity after arousal from torpor of hibernating bats is important for bat ecology and conservation, especially considering white-nose syndrome. In winter from 2011 to 2018, we acoustically monitored, and counted in hibernacula, two species of conservation concern—western small-footed myotis (Myotis ciliolabrum) and Townsend’s big-eared bats (Corynorhinus townsendii)—in 9 caves located in important habitat for these species in western North America. We investigated if cave-exiting activity differed by species, cave, number of hibernating bats, moon phase, and weather variables. Both species exited hibernacula during all winter months, but most activity occurred in March followed by November. Although we counted almost 15 times more Townsend’s big-eared bats during hibernacula surveys, we documented western small-footed myotis exiting caves 3 times more than Townsend’s big-eared bats. Cave-exiting activity increased with increasing number of hibernating bats, but more so for western small-footed myotis. Both species of bats were active during warm weather and low wind speeds. Western small-footed myotis were more active during colder temperatures, higher wind speeds, and greater change in barometric pressure than Townsend’s big-eared bats. Our results provide a long-term dataset of cave-exiting activity after arousal from torpor during hibernation for these species before the arrival of white-nose syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.