We describe the development of an in vitro library selection system (CIS display) that exploits the ability of a DNA replication initiator protein (RepA) to bind exclusively to the template DNA from which it has been expressed, a property called cis-activity. A diverse peptide library is created by ligation of DNA fragments of random sequence to a DNA fragment that encodes RepA. After in vitro transcription and translation, a pool of protein-DNA complexes is formed where each protein is stably associated with the DNA that encodes it. These complexes are amenable to the affinity selection of ligands to targets of interest. Here we show that RepA is a highly faithful cis-acting DNA-binding protein and demonstrate that libraries encoding >10 12 random 18-mer peptides can be constructed and used to isolate peptides that bind specifically to disparate targets. The use of DNA to encode the displayed peptides offers advantages over in vitro peptide display systems that use mRNA.
One drawback to the use of peptides as therapeutics has been their susceptibility to proteolysis. Here, we have used an in vitro display technology, CIS display, to enhance the proteolytic resistance of ligand-binding peptides by selection of protecting motifs from a large peptide library. The premise to this selection was that certain linear peptides within a library could form structures capable of preventing the access of proteases to defined cleavage sites without affecting ligand binding. A diverse 12-mer peptide library was inserted between a FLAG epitope motif and a thrombin cleavage site and this construct was fused to the bacterial initiator protein RepA for CIS display selection. After five rounds of selection, protection motifs were isolated that were capable of preventing proteolytic cleavage of the adjacent thrombin site. Some of the selected peptides were also resistant to more promiscuous proteases, such as chymotrypsin and trypsin, which were not used in the selection. The observed resistance to thrombin, trypsin and chymotrypsin translated into increased resistance to plasma proteases in vitro and to an increase in circulating half-lives in rats. This method can be applied to enhancing the in vivo stability of therapeutic peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.