As we age, structural changes contribute to progressive decline in organ function, which in the heart acts through poorly characterized mechanisms. Utilizing the rapidly aging fruit fly model with its significant homology to the human cardiac proteome, we found that cardiomyocytes exhibit progressive loss of Lamin C (mammalian Lamin A/C homologue) with age. Unlike other tissues and laminopathies, we observe decreasing nuclear size, while nuclear stiffness increases. Premature genetic reduction of Lamin C phenocopies aging's effects on the nucleus, and subsequently decreases heart contractility and sarcomere organization. Surprisingly, Lamin C reduction downregulates myogenic transcription factors and cytoskeletal regulators, possibly via reduced chromatin accessibility. Subsequently, we find an adult-specific role for cardiac transcription factors and show that maintenance of Lamin C sustains their expression and prevents age-dependent cardiac decline. Our findings are conserved in aged non-human primates and mice, demonstrating age-dependent nuclear remodeling is a major mechanism contributing to cardiac dysfunction.
The developing Drosophila heart consists of cardioblasts that differentiate into different types of cardiomyocytes and pericardial cells. A large body of work has identified numerous genes and pathways involved in heart specification and differentiation, downstream of cardiac transcription factors, such as Tinman (NKX2-5) and Dorsocross1/2/3 (TBX5). The advent of single-cell RNA sequencing (scRNAseq) technology allowed us for the first time to describe the transcriptome of different cardiac cell types in the Drosophila model at high resolution. Here, we applied scRNAseq on sorted cells of late-stage Drosophila embryos expressing a cardiac GFP reporter. We find distinct expression profiles of cardioblasts as they mature to cardiomyocytes, as well as discretely clustering pericardial cells, including a set expressing Tinman that potentially assist in heart morphogenesis. In addition, we describe other cell types that were sequenced as by-catch due to low but distinct extracardiac expression of the GFP reporter. Our studies on wildtype cardioblasts will be the foundation for investigating developmental profiles in mutant backgrounds and for generating gene regulatory networks at single-cell resolution during cardiogenesis.
As we age, structural changes contribute to progressive decline in organ function, which in the heart acts through poorly characterized mechanisms. Utilizing the rapidly aging fruit fly model with its significant homology to the human cardiac proteome, we found that cardiomyocytes exhibit progressive loss of Lamin C (mammalian Lamin A/C homologue) with age. Unlike other tissues and laminopathies, we observe decreasing nuclear size, while nuclear stiffness increases. Premature genetic reduction of Lamin C phenocopies aging’s effects on the nucleus, and subsequently decreases heart contractility and sarcomere organization. Surprisingly, Lamin C reduction downregulates myogenic transcription factors and cytoskeletal regulators, possibly via reduced chromatin accessibility. Subsequently, we find an adult-specific role for cardiac transcription factors and show that maintenance of Lamin C sustains their expression and prevents age-dependent cardiac decline. Our findings are conserved in aged non-human primates and mice, demonstrating age-dependent nuclear remodeling is a major mechanism contributing to cardiac dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.