From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca(2+) concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.
Flies, like all animals, need to find suitable and safe food. Because the principal food source for Drosophila melanogaster is yeast growing on fermenting fruit, flies need to distinguish fruit with safe yeast from yeast covered with toxic microbes. We identify a functionally segregated olfactory circuit in flies that is activated exclusively by geosmin. This microbial odorant constitutes an ecologically relevant stimulus that alerts flies to the presence of harmful microbes. Geosmin activates only a single class of sensory neurons expressing the olfactory receptor Or56a. These neurons target the DA2 glomerulus and connect to projection neurons that respond exclusively to geosmin. Activation of DA2 is sufficient and necessary for aversion, overrides input from other olfactory pathways, and inhibits positive chemotaxis, oviposition, and feeding. The geosmin detection system is a conserved feature in the genus Drosophila that provides flies with a sensitive, specific means of identifying unsuitable feeding and breeding sites.
Neuroethology utilizes a wide range of multidisciplinary approaches to decipher neural correlates of natural behaviors associated with an animal's ecological niche. By placing emphasis on comparative analyses of adaptive and evolutionary trends across species, a neuroethological perspective is uniquely suited to uncovering general organizational and biological principles that shape the function and anatomy of the nervous system. In this review, we focus on the application of neuroethological principles in the study of insect olfaction and discuss how ecological environment and other selective pressures influence the development of insect olfactory neurobiology, not only informing our understanding of olfactory evolution but also providing broader insights into sensory processing.
Culex quinquefasciatus (the Southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus as well of nematodes that cause lymphatic filariasis. It is one species within the Culex pipiens species complex and enjoys a distribution throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock and humans contributes to its ability to vector pathogens between species. We describe the genomic sequence of C. quinquefasciatus, its repertoire of 18,883 protein-coding genes is 22% larger than Ae. aegypti and 52% larger than An. gambiae with multiple gene family expansions including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.