BackgroundWhole-genome sequencing is performed routinely as a means to identify polymorphic genetic loci such as short tandem repeat loci. We have developed a simple tool, called pSTR Finder, which is freely available as a means of identifying putative polymorphic short tandem repeat (STR) loci from data generated from genome-wide sequences. The program performs cross comparisons on the STR sequences generated using the Tandem Repeats Finder based on multiple-genome samples in a FASTA format. These comparisons generate reports listing identical, polymorphic, and different STR loci when comparing two samples.MethodsThe web site http://forensic.mc.ntu.edu.tw:9000/PSTRWeb/Default has been developed as a means to identify polymorphic STR loci within complex mass genome sequences. The program was developed to generate a series of user-friendly reports.ResultsAs proof of concept for the program, four FASTA genome sequence samples of human chromosome X (AC_000155.1, CM000685.1, NC_018934.2, and CM000274.1) were obtained from GenBank and were analyzed for the presence of putative STR regions. The sequences within AC-000155.1 were used as an initial reference sequence from which there were 5443 identical and 4305 polymorphic STR loci identified using a repeat unit of 1–6 and 10 bp as the flanking sequence either side of the putative STR loci. A reliability test was used to compare five FASTA samples, which had sections of DNA sequence removed to mimic partial or fragmented DNA sequences, to determine whether pSTR Finder can efficiently and consistently find identical, polymorphic, and different STR loci.ConclusionsFrom the mass of DNA sequence data, the project was found to reproducibly identify polymorphic STR loci and generate user-friendly reports detailing the number and location of these potential polymorphic loci. This freely available program was found to be a useful tool to find polymorphic STR within whole-genome sequence data in forensic genetic studies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13323-015-0027-x) contains supplementary material, which is available to authorized users.
Accurate sequencing of the control region of the mitochondrial genome is notoriously difficult due to the presence of polycytosine bases, termed C-tracts. The precise number of bases that constitute a C-tract and the bases beyond the poly cytosines may not be accurately defined when analyzing Sanger sequencing data separated by capillary electrophoresis. Massively parallel sequencing has the potential to resolve such poor definition and provides the opportunity to discover variants due to length heteroplasmy. In this study, the control region of mitochondrial genomes from 20 samples was sequenced using both standard Sanger methods with separation by capillary electrophoresis and also using massively parallel DNA sequencing technology. After comparison of the two sets of generated sequence, with the exception of the C-tracts where length heteroplasmy was observed, all sequences were concordant. Sequences of three segments 16184-16193, 303-315 and 568-573 with C-tracts in HVI, II and III can be clearly defined from the massively parallel sequencing data using the program SEQ Mapper. Multiple sequence variants were observed in the length of C-tracts longer than 7 bases. Our report illustrates the accurate designation of all the length variants leading to heteroplasmy in the control region of the mitochondrial genome that can be determined by SEQ Mapper based on data generated by massively parallel DNA sequencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.