Abstract. In this note, we prove several lower bounds on the domination number of simple connected graphs. Among these are the following: the domination number is at least two-thirds of the radius of the graph, three times the domination number is at least two more than the number of cut-vertices in the graph, and the domination number of a tree is at least as large as the minimum order of a maximal matching.
In this paper we prove several new lower bounds on the maximum number of leaves of a spanning tree of a graph related to its order, independence number, local independence number, and the maximum order of a bipartite subgraph. These new lower bounds were conjectured by the program Graffiti.pc, a variant of the program Graffiti. We use two of these results to give two partial resolutions of conjecture 747 of Graffiti (circa 1992), which states that the average distance of a graph is not more than half the maximum order of an induced bipartite subgraph. If correct, this conjecture would generalize conjecture number 2 of Graffiti, which states that the average distance is not more than the independence number. Conjecture number 2 was first proved by F. Chung. In particular, we show that the average distance is less than half the maximum order of a bipartite subgraph, plus one-half; we also show that if the local independence number is at least five, then the average distance is less than half the maximum order of a bipartite subgraph. In conclusion, we give some open problems related to average distance or the maximum number of leaves of a spanning tree.
In a classical 1986 paper by Erdös, Saks and Sós every graph of radius r has an induced path of order at least 2r − 1. This result implies that the independence number of such graphs is at least r . In this paper, we use a result of S. Fajtlowicz about radius-critical graphs to characterize graphs where the independence number is equal to the radius, for all possible values of the radius except 2, 3, and 4. We briefly discuss these remaining cases as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.