Although widespread neural atrophy is an inevitable consequence of normal aging, not all cognitive abilities decline as we age. For example, spoken language comprehension tends to be preserved, despite atrophy in neural regions involved in language function. Here, we combined measures of behavior, functional activation, and gray matter (GM) change in a younger (19–34 years) and older group (49–86 years) of participants to identify the mechanisms leading to preserved language comprehension across the adult life span. We focussed primarily on syntactic functions because these are strongly left lateralized, providing the potential for contralateral recruitment. In an functional magnetic resonance imaging study, we used a word-monitoring task to minimize working memory demands, manipulating the availability of semantics and syntax to ask whether syntax is preserved in aging because of the functional recruitment of other brain regions, which successfully compensate for neural atrophy. Performance in the older group was preserved despite GM loss. This preservation was related to increased activity in right hemisphere frontotemporal regions, which was associated with age-related atrophy in the left hemisphere frontotemporal network activated in the young. We argue that preserved syntactic processing across the life span is due to the shift from a primarily left hemisphere frontotemporal system to a bilateral functional language network.
Patients with category-specific deficits have motivated a range of hypotheses about the structure of the conceptual system. One class of models claims that apparent category dissociations emerge from the internal structure of concepts rather than fractionation of the system into separate substores. This account claims that distinctive properties of concepts in the living domain are vulnerable because of their weak correlation with other features. Given the assumption that mutual activation among correlated properties produces faster activation in the normal system, the authors predicted a disadvantage for the distinctive features of living things for unimpaired adults. Results of a speeded feature verification study supported this prediction, as did a computational simulation in which networks mapped from orthography to semantics.
For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left hemisphere damage and healthy participants to ask whether the left inferior frontal gyrus is essential for syntactic processing. In a functional neuroimaging study, participants listened to spoken sentences that either contained a syntactically ambiguous or matched unambiguous phrase. Behavioural data on three tests of syntactic processing were subsequently collected. In controls, syntactic processing co-activated left hemisphere Brodmann areas 45/47 and posterior middle temporal gyrus. Activity in a left parietal cluster was sensitive to working memory demands in both patients and controls. Exploiting the variability in lesion location and performance in the patients, voxel-based correlational analyses showed that tissue integrity and neural activity—primarily in left Brodmann area 45 and posterior middle temporal gyrus—were correlated with preserved syntactic performance, but unlike the controls, patients were insensitive to syntactic preferences, reflecting their syntactic deficit. These results argue for the essential contribution of the left inferior frontal gyrus in syntactic analysis and highlight the functional relationship between left Brodmann area 45 and the left posterior middle temporal gyrus, suggesting that when this relationship breaks down, through damage to either region or to the connections between them, syntactic processing is impaired. On this view, the left inferior frontal gyrus may not itself be specialized for syntactic processing, but plays an essential role in the neural network that carries out syntactic computations.
Theories of the representation and processing of concepts have been greatly enhanced by models based on information available in semantic property norms. This information relates both to the identity of the features produced in the norms and to their statistical properties. In this article, we introduce a new and large set of property norms that are designed to be a more flexible tool to meet the demands of many different disciplines interested in conceptual knowledge representation, from cognitive psychology to computational linguistics. As well as providing all features listed by 2 or more participants, we also show the considerable linguistic variation that underlies each normalized feature label and the number of participants who generated each variant. Our norms are highly comparable with the largest extant set (McRae, Cree, Seidenberg, & McNorgan, 2005) in terms of the number and distribution of features. In addition, we show how the norms give rise to a coherent category structure. We provide these norms in the hope that the greater detail available in the Centre for Speech, Language and the Brain norms should further promote the development of models of conceptual knowledge. The norms can be downloaded at www.csl.psychol.cam.ac.uk/propertynorms.Electronic supplementary materialThe online version of this article (doi:10.3758/s13428-013-0420-4) contains supplementary material, which is available to authorized users.
Emerging evidence from neuroimaging and neuropsychology suggests that human speech comprehension engages two types of neurocognitive processes: a distributed bilateral system underpinning general perceptual and cognitive processing, viewed as neurobiologically primary, and a more specialized left hemisphere system supporting key grammatical language functions, likely to be specific to humans. To test these hypotheses directly we covaried increases in the nonlinguistic complexity of spoken words [presence or absence of an embedded stem, e.g., claim (clay)] with variations in their linguistic complexity (presence of inflectional affixes, e.g., play+ ed). Nonlinguistic complexity, generated by the on-line competition between the full word and its onset-embedded stem, was found to activate both right and left fronto-temporal brain regions, including bilateral BA45 and -47. Linguistic complexity activated left-lateralized inferior frontal areas only, primarily in BA45. This contrast reflects a differentiation between the functional roles of a bilateral system, which supports the basic mapping from sound to lexical meaning, and a language-specific left-lateralized system that supports core decompositional and combinatorial processes invoked by linguistically complex inputs. These differences can be related to the neurobiological foundations of human language and underline the importance of bihemispheric systems in supporting the dynamic processing and interpretation of spoken inputs.brain | language | morphology | inflection C onsidered as a neuroscientific phenomenon, human language comprehension-and human language function in generalis both remarkably specific and remarkably distributed in its neural instantiation. One hundred fifty years of neuropsychological research demonstrate the irreplaceable role of left hemisphere perisylvian networks (linking left inferior frontal and posterior temporal brain areas) in supporting key combinatorial language functions in the domain of inflectional morphology and syntax. At the same time, evidence from lesion studies and neuroimaging of the intact brain shows that dynamic access to lexical meaning, and the ability to rapidly construct semantic and pragmatic interpretations of incoming speech, can remain strikingly intact even when the left perisylvian language areas are destroyed, implying a distributed bihemispheric substrate. We believe that these contrasts reflect a fundamental distinction in the types of processing operations underlying normal language comprehension and in the neural networks that support these functions. In this event-related fMRI study of lexical processing, we test the hypothesis that general purpose processing demands engage both right and left perisylvian systems, whereas linguistically specific processing demands selectively engage left hemisphere systems.A critical element of this account is its emphasis on the bihemispheric foundations of human speech communication. Functional imaging shows that bilateral activation of temporal lobe structures in a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.