Naturstoff reagent A (diphenylboric acid 2-aminoethyl ester [DPBA]) has been used historically in plant science to observe polyphenolic pigments, such as flavonoids, whose fluorescence requires enhancement to be visible by microscopy. Flavonoids are common dietary constituents and are the focus of considerable attention because of their potential as novel therapies for numerous diseases. The molecular basis of therapeutic activity is only gradually being established, and one strand of such research is making use of the social amoeba Dictyostelium discoideum. We extended the application of DPBA to flavonoid imaging in these preclinical studies, and report the first method for use of DPBA in this eukaryotic model microbe and its applicability alongside subcellular markers. This in vivo fluorescence imaging provided a useful adjunct to parallel chemical and genetic studies.
The evolutionarily ubiquitous multidrug and toxin efflux (MATE) proteins mediate anticancer and antibiotic resistance, while transporting toxins, ions and flavonoids in plants. MATEs of the model amoeba Dictyostelium discoideum have not been studied although sequences of its pair group with the two Homo sapiensMATEs. Ddmate1 and 2 are both transcribed, Ddmate2 more so, with peaks in vegetative and slug life-cycle stages. Ddmate1 was upregulated in response to a toxin, ethidium bromide, at the lowest concentration tested. Removing MATE function by inhibitor or mutation increased intracellular levels of various compounds, confirming these as efflux transporters. Plasma membrane localisation was revealed using a GFP-MATE1 reporter-line. MATE1 and MATE2 phenotypes indicated roles beyond detoxification: on Klebsiella lawns these mutants produced significantly smaller plaques than WT, and their axenic growth rates were also lower. The transporters’ impact on use of Dictyostelium for novel drug research was tested using flavonoids. LCMS and fluorescence-imaging revealed differential flavonoid uptake. Flavanones such as naringenin did not cross into cells, whereas flavonols localised to mitochondria and cytoplasm. Ddmate1 transcription was upregulated, however, in response to naringenin, which is known to reduce levels of kidney-disease protein PKD2 in both Dictyostelium and animal cells. Increased flavonol intracellular concentrations confirmed that efflux not import was impeded in MATE1 and MATE2, and kaempferol therefore further reduced MATE1-cells’ growth. These D. discoideum MATEs may usefully model the HsMATEs, aid understanding of flavonoids’ effects, and should be considered when using this model eukaryote to screen drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.